pytorch对模型参数初始化】的更多相关文章

1.使用apply() 举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 # coding:utf- from torch import nn def weights_init(mod): """设计初始化函数""" classname=mod.__class__.__name__ # 返回传入的module类型 print(classname) : #这里的C…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
使用了一段时间PyTorch,感觉爱不释手(0-0),听说现在已经有C++接口.在应用过程中不可避免需要使用Finetune/参数初始化/模型加载等. 模型保存/加载 1.所有模型参数 训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存(一般保存最好模型与当前轮模型).一般使用pytorch里面推荐的保存方法.该方法保存的是模型的参数. #保存模型到checkpoint.pth.tar torch.save(model.module.state_…
一.使用Numpy初始化:[直接对Tensor操作] 对Sequential模型的参数进行修改: import numpy as np import torch from torch import nn # 定义一个 Sequential 模型 net1 = nn.Sequential( nn.Linear(30, 40), nn.ReLU(), nn.Linear(40, 50), nn.ReLU(), nn.Linear(50, 10) ) # 访问第一层的参数 w1 = net1[0].w…
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本:1.6.0 tensorflow版本:1.15.0 关于参数初始化,主要的就是一些数学中的分布,比如正态分布.均匀分布等等. 1.pytorch (1)自定义可训练参数 torch.bernoulli(input, out=None) → Tensor 从伯努利分布中抽取二进制随机数 (0 或 1…
1. 均匀分布 torch.nn.init.uniform_(tensor, a=0, b=1) 从均匀分布U(a, b)中采样,初始化张量. 参数: tensor - 需要填充的张量 a - 均匀分布的下界 b - 均匀分布的上界 代码示例: >>> w = torch.Tensor(3, 5) >>> torch.nn.init.uniform_(w) tensor([[0.1755, 0.4399, 0.8769, 0.8465, 0.2909], [0.9962…
原文地址: https://blog.csdn.net/u011668104/article/details/81670544 ---------------------------------------------------------------------------------------------------------------- 答案:不怕不怕,pytorch自己默认有初始化 证据如下: torch.nn.Conv2d的参数初始化    https://pytorch.or…
首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 开一个我的github传送门,可以看到代码. https://github.com/VVV-LHY/deeplearning.ai/tree/master/improveNeuralNetwork/InitializeRegularize 以下是今天要分类的目标点集: 在初始化w权重矩阵为0的情况下…
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存.加载的上述三类环境不同,加载时会出错.就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数.CPU加载使用模型 #保存 PATH = 'cifar_net.pth' torch.save(net.module.state_dict(), PATH) #加载 net = Net()…
本文分为两部分,第一部分讲如何保存模型参数,优化器参数等等,第二部分则讲如何读取. 假设网络为model = Net(), optimizer = optim.Adam(model.parameters(), lr=args.lr), 假设在某个epoch,我们要保存模型参数,优化器参数以及epoch 一. 1. 先建立一个字典,保存三个参数: state = {‘net':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoc…