题面: 传送门 思路: dp方程实际上很好想 设$dp\left[i\right]\left[j\right]$表示前$j$个镇子设立$i$个邮局的最小花费 然后状态转移: $dp\left[i\right]\left[j\right]=min\left(dp\left[i-1\right]\left[k-1\right]+w\left(k,j\right)\right)$ 其中$w$表示在这个闭区间内设立一个邮局的最小费用 推一下发现这里$w$可以$O\left(1\right)$前缀和计算,…
题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小. 析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村庄用 k 个邮局距离最小,w可以先预处理出来O(n^2),但是这个方程很明显是O(n^3),但是因为是POJ,应该能暴过去..= =,正解应该是对DP进行优化,很容易看出来,w是满足四边形不等式的,也可以推出来 s 是单调的,可以进行优化. 代码如下: #pragma comment(linker,…
有很多种算法: 1,任意两堆可以合并:贪心+单调队列. 2,相邻两堆可合并:区间DP    (O(n^3)) ). 3,相邻,四边形不等式优化DP (O(n^2) ). 4,相邻,GarsiaWachs算法    (O(nlgn)). 这里实现了第2,3种解法:(个人的区间DP习惯从后面向前面扫) 看起来第四种还是比较重要的,有空再搞. 2:暴力DP #include<cstdio> #include<cstdlib> #include<cstring> #includ…
题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left[i\right]+y\left[k\right]-y\left[j\right]$ 然后就明显可以区间dp了 设$dp\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$中的点连起来的最小花费,然后定义上面那个最小花费为$w\left(i,k,…
题面: 传送门 思路: 因为集合可以无序选择,所以我们先把输入数据排个序 然后发先可以动归一波 设$dp\left[i\right]\left[j\right]$表示前j个数中分了i个集合,$w\left(i\right)\left(j\right)$表示$i$到$j$的闭区间分到一个集合里的花费 然后就有方程式: $dp\left[i\right]\left[j\right]=min\left(dp\left[i-1\right]\left[k-1\right]+w\left(k\right)…
记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编号在[1,n]的叫做正确节点,[n+1,m]的叫做错误节点.一个叶子,如果是正确节点则为正确叶子,否则称为错误叶子.莎缇拉要帮助昴到达贤者之塔,因此现在面临着存档位置设定的问题.为了让昴成长为英雄,因此一共只有p次存档的机会,其中1和n必须存档.被莎缇拉设置为要存档的节点称为存档位置.当然不能让昴陷…
题目大意:有v个村庄成直线排列,要建设p个邮局,为了使每一个村庄到离它最近的邮局的距离之和最小,应该怎样分配邮局的建设,输出最小距离和. 题目分析:定义状态dp(i,j)表示建设 i 个邮局最远覆盖到第 j 个村庄时最小距离和.容易得到dp(i,j)=min(dp(i-1,k-1)+w(k,j)),其中w(k,j)表示在k~j之间建设一个邮局的最小距离,所以很显然w(i,j)关于包含关系单调,可以看出w(i,j)还满足凸四边形不等式,所以dp(i,j)也满足凸四边形不等式.那么就有K(i,j-1…
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1:  如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2:  若f满足四边形不等式,则决策s满足 s[i…
[题目大意] v个村庄p个邮局,邮局在村庄里,给出村庄的位置,求每个村庄到最近邮局距离之和的最小值. [思路] 四边形不等式,虽然我并不会证明:( dp[i][j]表示前i个村庄建j个邮局的最小值,w[i][j]表示在i到j之间建立一个邮局的最小值.w[i][j]显然取i~j的中位数,可以在O(1)时间内求出. 显然dp[i][j]=min{dp[k][j-1]+w[k+1][i]}. 傻傻写错i和j…… #include<iostream> #include<cstdio> #i…
题目链接 \(Description\) 一条直线上有n个村庄,位置各不相同.选择p个村庄建邮局,求每个村庄到最近邮局的距离之和的最小值. \(Solution\) 先考虑在\([l,r]\)建一个邮局,最优解肯定是建在中间. 这样\(mid\)两边对称,距离和是最小的:若建在\(mid-1\),(假设\(mid\)与\(mid-1\)相距\(1\))虽然左边\(mid-1\)个村庄\(dis\)都\(-1\)了,但是右边有\(mid\)个村庄的\(dis\)会\(+1\). 如果区间长度为偶数…