1.什么是非负矩阵分解? NMF的基本思想可以简单描述为:对于任意给定的一个非负矩阵V,NMF算法能够寻找到一个非负矩阵W和一个非负矩阵H,使得满足 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积.如下图所示,其中要求分解后的矩阵H和W都必须是非负矩阵. 分解前后可理解为:原始矩阵的列向量是对左矩阵中所有列向量的加权和,而权重系数就是右矩阵对应列向量的元素,故称为基矩阵,为系数矩阵.一般情况下的选择要比小,即满足,这时用系数矩阵代替原始矩阵,就可以实现对原始矩阵进行降维,得到数据特征的降维矩…