机器学习实战之SVM】的更多相关文章

一引言: 支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法 支持向量机是一种二类分类算法,假设一个平面可以将所有的样本分为两类,位于正侧的样本为一类,值为+1,而位于负一侧的样本为另外一类,值为-1. 我们说分类,不仅仅是将不同的类别样本分隔开,还要以比较大的置信度来分隔这些样本,这样才能使绝大部分样本被分开.比如,我们想通过一个平面将两个类别的样本分开,如果这些样本是线性可分(或者近视线…
对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT条件 https://blog.csdn.net/mr_kktian/article/details/53750424 一.什么是SVM? SVM的英文全称是Support Vector Machines,我们叫它支持向量机.支持向量机是我们用于分类的一种算法.让我们以一个小故事的形式,开启我们的SVM之旅…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知识,需要慢慢地理解.我也是通过看别人的博客理解SVM的. 推荐大家看看on2way的SVM系列: 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系列(二):SVM的理论基础 解密SVM系列(三):SMO算法原理与实战求解 解密SVM系列(四):SVM非线性分类原理实验 基本概念 SVM -…
近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学习(也称聚类).有监督学习有两种功能,一种是分类(本书第一部分介绍),一种是回归预测(本书第二部分介绍).这样就对这本书的思路有了一个总体把握.本书涉及算法包括:k-近邻算法(KNN).决策树.朴素贝叶斯.Logistic回归.支持向量机(SVM).AdaBoost算法.k-均值聚类算法(k-means).A…
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3. 过多的变量会妨碍查找规律的建立. 4. 仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 1. 2 降维的目的: 1. 减少预测变量的个数 2. 确保这些变量是相互独立的 3. 提供一个框架来…
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…
基本概念 支持向量机(support vector machines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机还包括核技巧,这使它成为实质上的非线性分类器.其学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问题,支持向量机的学习算法是求解凸二次规划的最优化算法. 支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机(linear s…
机器学习实战:用nodejs实现人脸识别   在本文中,我将向你展示如何使用face-recognition.js执行可靠的人脸检测和识别 . 我曾经试图找一个能够精确识别人脸的Node.js库,但是没有找到,因此,我决定自己搞一个!  这个npm包基于dlib实现,因为我发现dlib的识别精度很高. dlib库使用深度学习方法,并附带一些预训练的模型,这些预置的模型,在LFW人脸识别基准测试上可以达到惊人的准确度:99.38% . 为什么要搞这个东西? 最近我一直在尝试使用Node.js来构建…
1:简单概念描写叙述 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们须要简介几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于50%. 事实上随意的分类器都能够做为弱分类器,比方之前介绍的KNN.决策树.Naïve Bayes.logiostic回归和SVM都能够.这里我们採用的弱分类器是单层决策树,它是一个单节点的决策树. 它是adaboost中最流行的弱分类器,当然并不是唯一可用的弱分类器.即从特征中选择一个特征来进行分类.该特征能…