问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet…
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet…
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male&q…
一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码 2.离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3} 使用pandas可以很方便的对离散型特征进行one-hot编码 import pandas as pd df = pd.DataFrame([ ['green', '…
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet…
问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from Europe","from US","from Asia"] ["uses Firefox","uses Chrome","uses Safari","uses Internet Explo…
前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的,而是离散的,无序的.通常我们需要对其进行特征数字化. 那什么是特征数字化呢?例子如下: 性别特征:["男","女"] 祖国特征:["中国","美国,"法国"] 运动特征:["足球","篮球…
在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为XL>L>M.而T恤颜色是无序的.在讲解处理分类数据的技巧之前,我们先创建一个新的DataFrame对象: import pandas as pd from pandas import DataFrame data = {'color':['green','red','blue'],       …
一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下:  在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: 分类变量(定量特征)与连续变量(定性特征).我们训练模型的变量,一般分为两种形式.以广告收入增长率为例,如果取值为0-1之间任意数,则此时变量为连续变量.如果把增长率进行分段处理,表示成如下形式:[0,0.3],(0.3,0.6],(0.6,1],那么此时变量为分类变量.  特征转换.对于分类变量…
学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用.所以,必须进行特征的归一化,每个特征都单独进行归一化. 对于连续性特征:…
数据预处理的常用流程: 1)去除唯一属性 2)处理缺失值 3)属性编码 4)数据标准化.正则化 5)特征选择 6)主成分分析 1.去除唯一属性 如id属性,是唯一属性,直接去除就好 2.处理缺失值 (1)直接使用含有缺失值的特征 如决策树算法就可以直接使用含有缺失值的特征 (2)删除含有缺失值的特征 (3)缺失值补全 1)均值插补 若样本属性的距离是可度量的,则该属性的缺失值就以该属性有效值的平均值来插补缺失的值.如果样本的属性的距离是不可度量的,则该属性的缺失值就以该属性有效值的众数来插补缺失…
在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难.即使将类别与数字对应,例如{'A','B','C'}与[0,1,2]对应,我们也不能认为A与B,B与C距离为1,而A与C距离为2.独热编码正是为了处理这种距离的度量,该方法认为每个类别之间的距离是一样的.该方法将类别与向量对应,例如{'A','B','C'}分别与[1,0,0],[0,1,0],[0,0,1]对应,注意现在各个类别之间的欧式距离是…
One-Hot独热编码 Dummy Encoding VS One-Hot Encoding二者都可以对Categorical Variable做处理,定性特征转换为定量特征,转换为定量特征其实就是将原来每个特征的类别拿出来作为一个新的特征(Dummy Variable)了,如性别——男,女,定量特征即将男作为一个特征,女作为一个特征,如果数据中的Categorical Variable很多,且每个Variable种类比较多,那么转换后的数据可能会非常稀疏.两者本身存在差别:difference…
前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事. 下面举个例子解释一下: code: from sklearn.preprocessing import OneHotEncoder import numpy as np train = np.array([ [0, 1, 2], [1, 1, 0], [2, 0, 1], [3, 1, 1] ]) one_ho…
对于学习机器学习算法来说,肯定会涉及到数据的处理,因此一开始,对数据的预处理进行学习 对于数据的预处理,大概有如下几步: 步骤1 -- 导入所需库 导入处理数据所需要的python库,有如下两个库是非常重要的两个库,每次必导入 numpy 该库包含数学函数功能的库 pandas 该库用于导入和管理数据集 步骤2 -- 导入数据集 数据集通常以 .csv 格式进行保存,csv文件是以普通文本的形式存储列表数据,文件中每一行是一个数据记录. 对于csv文件,使用pandas模块中的 read_cvs…
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果   正例 反例 正例 TP 真正例 FN 假反例 反例 FP 假正例 TN 真反例 召回率:TP/(TP+FN) f1:2TP/(2TP+FN+FP) 我们使用scikit-learn的分类报告来查看各种其他指标: 现在我们来介绍一下缩放和中心化,他们是预处理数值数据最基本的方法,接下来,看看它们是否对模型有影响,以及怎样的影响…
在<定量变量和定性变量的转换(Transform of Quantitative & Qualitative Variables)>一文中,我们可以看到虚拟变量(Dummy Variable)与独热编码( One Hot Encoding)非常相似,其不同之处在于:在虚拟编码方案中,当特征具有 m 个不同类别标签时,我们将得到 m-1 个二进制特征,作为基准的特征被完全忽略:而在独热编码方案中,我们将得到 m 个二进制特征. 可以看到,独热编码( One Hot Encoding)比虚…
背景 接触tensorflow时,学习到mnist,发现处理数据的时候采取one-hot编码,想起以前搞FPGA状态机遇到过格雷码与独热码. 解析: 将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理. 比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值. 不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3).两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_…
https://www.imooc.com/article/35900 参考上面大神的原文,说的非常透彻.非常便于理解.感谢 感谢 自己做个小笔记,便于自己学习 特征值是离散的,无序的. 如: 性别特征:["男","女"] 祖国特征:["中国","美国,"法国"] 运动特征:["足球","篮球","羽毛球","乒乓球"] 假如某个样本(某…
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def test_SelectKBest(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] y=[0,1,0,1] print("before transform:",X) selector=SelectPercentile(s…
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_VarianceThreshold(): X=[[100,1,2,3], [100,4,5,6], [100,7,8,9], [101,11,12,13]] selector=VarianceThreshold(1) selector.fit(X) print("Variances is %s"…
from sklearn.preprocessing import Normalizer #数据预处理正则化Normalizer模型 def test_Normalizer(): X=[[1,2,3,4,5], [5,4,3,2,1], [1,3,5,2,4,], [2,4,1,3,5]] print("before transform:",X) normalizer=Normalizer(norm='l2') print("after transform:",no…
from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[1,5,1,2,10], [2,6,3,2,7], [3,7,5,6,4,], [4,8,7,8,1]] print("before transform:",X) scaler=MaxAbsScaler() scaler.fit(X) print("scale_ is :&quo…
from sklearn.preprocessing import StandardScaler #数据预处理标准化StandardScaler模型 def test_StandardScaler(): X=[[1,5,1,2,10], [2,6,3,2,7], [3,7,5,6,4,], [4,8,7,8,1]] print("before transform:",X) scaler=StandardScaler() scaler.fit(X) print("scale_…
from sklearn.preprocessing import MinMaxScaler #数据预处理标准化MinMaxScaler模型 def test_MinMaxScaler(): X=[[1,5,1,2,10], [2,6,3,2,7], [3,7,5,6,4,], [4,8,7,8,1]] print("before transform:",X) scaler=MinMaxScaler(feature_range=(0,2)) scaler.fit(X) print(&q…
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] print("before transform:",X) encoder=OneHotEncoder(sparse=False) encoder.fit(X) print(&quo…
from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] print("before transform:",X) binarizer=Binarizer(threshold=2.5) print("after transform:",bin…
from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_DictionaryLearning(): X=[[1,2,3,4,5], [6,7,8,9,10], [10,9,8,7,6,], [5,4,3,2,1]] print("before transform:",X) dct=DictionaryLearning(n_components=3) dct.…
from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn import neighbors, datasets from sklearn.datasets import load_digits from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_tes…