传送门 由于是边权三进制不进位的相加,那么可以考虑每一位的贡献 对于每一位,生成树的边权相当于是做模 \(3\) 意义下的加法 考虑最后每一种边权的生成树个数,这个可以直接用生成函数,在矩阵树求解的时候做一遍这个生成函数的模 \(3\) 意义下的循环卷积求出系数即可 暴力多项式运算不可取 考虑选取 \(3\) 个数字 \(x_i\),使得 \(x_i^3\equiv1(mod~10^9+7)\) 即找出 \(3\) 次单位复数根 \(\omega_3^0,\omega_3^1,\omega_3^…
loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵树求出来的是树的边权之积的和,而我们要求树的边权的不进位三进制和的和. 由于矩阵树求出来的是树的边权之积的和,考虑暴力上生成函数求解循环卷积,结果就是 $ c $ 的项的系数和. 但很明显生成函数暴力算是没得整的. 所以我们想到了利用单位根实现的k进制FWT. 很幸运的 $ \omega_{ 3 }…
又是一个矩阵树套多项式的好题. 这里我们可以对每一位单独做矩阵树,但是矩阵树求的是边权积的和,而这里我们是要求加法,于是我们i将加法转化为多项式的乘法,其实这里相当于一个生成函数?之后如果我们暴力做的话,就是强行带入x插值,复杂度$O(8*2n*n^{3})$,还不够优秀,于是我们考虑用$dft$优化这个过程,这里我们需要找到一个三次单位根,于是我们考虑扩域的思想,我们把数表示为$(a+b*w_{3})$,这里$w_{3}$满足$w_{3}^{3}=1$且$w_{3}^{1}+w_{3}^{2}…
「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iA​i​​,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一段),并且每段至少有一个元素,使得和最大的那一段最小. 请你求出这个最小值. 输入格式 第一行两个整数 n,K n, Kn,K,意义见题目描述.接下来一行 n nn 个整数表示序列 Ai A_iA​i​​. 输出格式 仅一行一个整数表示答案. 样例 样例输入 9 4 1 1 1 3 2 2 1 3…
题目 对于两个区间\((a,b),(c,d)\),若\(c < a < d\)或\(c < b < d\)则可以从\((a,b)\)走到\((c,d)\)去,现在有以下两种操作: 给定\(1 \space x \space y\),表示在集合中添加\((x,y)\)这个区间,保证新加入的这个区间一定比之前的所有区间长度长. 给定\(2 \space a \space b\),表示询问是否有一条路径能从第\(a\)个区间走到第\(b\)个区间. 初始时区间集合为空,现在请你回答所有的…
题目描述 村子间的小路年久失修,为了保障村子之间的往来,AAA君决定带领大家修路. 村子可以看做是一个边带权的无向图GGG, GGG 由 nnn 个点与 mmm 条边组成,图中的点从 1∼n1 \sim n1∼n 进行编号.现在请你选择图中的一些边,使得 ∀1≤i≤d\forall 1 \leq i \leq d∀1≤i≤d , iii 号点和 n−i+1n - i + 1n−i+1号点可以通过你选择出的那些边连通,并且你要最小化选出的所有边的权值和.请你告诉AAA君这个最小权值和. 输入格式…
Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符,第 \(i\) 个音符的音高为 \(h_i\).IA 的音域是 \(A\),她只能唱出 \(1\sim A\) 中的正整数音高.因此 \(1\le h_i\le A\). 在写歌之前,IA 需要确定下这首歌的结构,于是她写下了 \(Q\) 条限制,其中第 \(i\) 条为:编号在 \(l_i\) 到…
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上,树根在最上面,左右子树分别在树根的左下方与右下方,且他们也都满足 这样的悬挂规则.为了让这个模型更加美观,小Y选择了一种让这棵二叉树的中序遍历序列最小的悬挂方法.所谓中序遍历最小,就是指中序遍历的结点编号序列的字典 序最小. 一天,这个模型不小心被掉在了地上,幸运的是,所有结点和边都没摔坏,但是她想…
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中点有接口,所有水管的粗细都相同,所以如果两个相邻方格的公共边界的中点都有接头,那么可以看作这两个接头互相连接.水管有以下 \(15\) 种形状: 游戏开始时,棋盘中水管可能存在漏水的地方. 形式化地:如果存在某个接头,没有和其它接头…
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\) 个点. 现在我们需要再连接 \(n-1\) 条边,使该图变成一棵树.对一种连边方案,设原图中第 \(i\) 个连通块连出了 \(d_i\) 条边,那么这棵树 \(T\) 的价值为: \[ \mathrm{val}(T) = \left(\prod_{i=1}^{n} {d_i}^m\right)…