题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n,m\}\leqslant10^{23}$,所以一般选$3$个模数即可,求出这三个模数下的答案,然后中国剩余定理即可. 假设这一位的答案是$x$,三个模数分别为$A,B,C$,那么: $$x\equiv x_1\pmod{A}\\x\equiv x_2\pmod{B}\\x\equiv x_3\pm…
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F*G$,我可以把这两个多项式各分成两个多项式,一个表示$F_x/M$,一个表示$F_x$%$M$($M$是自己设定的阈值). 比如说$F=a*M+b,G=c*M+d$,那么$F*G=(a*M+b)*(c*M+d)=a*c*M^2+a*d*M+b*c*M+b*d$. 然后?就水过了啊…… 顺便提一下,…
题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) . 系数对 pp 取模,且不保证 pp 可以分解成 p = a \cdot 2^k + 1p=a⋅2k+1 之形式. 输入输出格式 输入格式: 输入共 33 行.第一行 33 个整数 n, m, pn,m,p ,分别表示 F(x), G(x)F(x),G(x) 的次数以及模数 pp .第二行为 n+1n+1 个整数, 第 ii 个整数 a_iai​…
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 mod! 乘法会爆 long long 时用快速乘! 两次合并的模数,第一次是 (ll) p1*p2,第二次直接对题目的模数取模即可! 注意局部开 (ll)! 合并时用到的逆元每次都一样,所以要先处理好而不是现场快速幂算!! 然而为什么时间还是 Narh 的两倍! 一晚上的心血... 代码如下: #i…
三模数 NTT,感觉不是很难写 $?$ 代码借鉴的 https://www.cnblogs.com/Mychael/p/9297652.html code: #include <bits/stdc++.h> #define SIZE 400005 #define ll long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; inline ll qpow(ll x,…
题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long long 的模数,再要和第三个合并的话就爆 long long ,所以可以用一种让两个模数的乘积不出现的方法:https://blog.csdn.net/qq_35950004/article/details/79477797 x*m1+a1 = -y*m2 + a2  <==>  x*m1+y*m2…
这个题还有一些其他的做法,以后再补,先记一下三模数$NTT$的方法. 发现这个题不取模最大的答案不会超过$10^5 \times 10^9 \times 10^9 = 10^{23}$,也就是说我们可以取三个满足$NTT$性质的模数先算然后再合并起来. 比如三个模数可以分别取$998244353, 1004535809, 469762049$. 那么我们现在要做的就是合并三个同余方程: $$x \equiv a_1(\mod P_1)$$ $$x \equiv a_2(\mod P_2)$$ $…
https://www.luogu.org/problemnew/show/P4245 给两个多项式,求其乘积,每个系数对p取模. 参考: 代码与部分理解参考https://www.luogu.org/blog/yhzq/solution-p4245 NTT常用模数https://blog.csdn.net/hnust_xx/article/details/76572828 一些有关NTT讲解的东西. ———————————— NTT作用和DFT相同,只是NTT可以取模,且精度误差小. 我们的唯…
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define maxn 1000000 #define M 32768 #define double long double #define ll long long using namespace std; namespace poly{ const double pi=acos(-1); int rev[…
Luogu4245 只要做三次的NTT,快的飞起 普通NTT,做9次 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define debug(...) fprintf(stderr,__VA_ARGS__) #define Debug(x) cout<<#x<<"="<<x<<endl u…
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ x^n)\] \[f^2(x)g^2(x)-2f(x)g(x)+1\equiv 0\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv 1\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv f(x)g'(x)…
MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MTT没有模数的限制,比NTT更加自由,应用广泛,可以用于任意模数或很大的数. MTT MTT是基于NTT的,其思想很简单,就是做多次NTT,每次使用不同的素数,然后使用CRT合并解,在合并的过程中模最终模数,或是对于无模数的情况使用高精度. 做NTT的次数取决于最大可能答案的大小,所用的所有素数之积必…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面右侧面板 "您想嘴谁" 中选择 "大恐龙" 就可以在页面左下角戳她哦) 首先务必先学会 NTT (如果不会,请看多项式全家桶(一)),并充分理解中国剩余定理-- 之前提到了,普通 NTT 的模数必须是一个质数,且这个质数中必须有一个足够大的 \(2\) 的幂作为因子.然…
任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004535809,469762049\),这三个原根都是\(3\) 如果要任意模数怎么办? \(n\)次多项式在模\(m\)下乘积,最终系数一定不会大于\(nm^2\) 所以我们找三个模数分别做\(NTT\)再合并一下就好辣 但这样的合并结果会爆\(long long\)呢 需要用高精吗? 可以使用一些…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以及需要敲一发类似任意模数ntt的东西来避免爆精度.成功以这种做法拿下luogu倒数rank1,至于bzoj不指望能过了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib>…
题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/79547242 https://blog.csdn.net/zhouyuheng2003/article/details/85561887 模数不是\(NTT\)模数,考虑用多个\(NTT\)模数分别卷积,最后\(CRT\)合并(由中国剩余定理,同余方程组在模\(M=\prod m_i\)的情况下…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整…
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度. 目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分 重链剖分 实际上我们经常讲的树剖,就是重链剖分的常用称呼. 对于每个点,选择最大的子树,将这条连边划分为重边,而连向其他子树的边划分为轻边. 若干重边连接在…
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模板题,直接贴上来. [代码] #include<queue> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; ; queue < int >…
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但是这次用last边已经不行了,只能拿76分.我们把跳fail边的过程放到串扫描完之后一次性进行. AC自动机 #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int&g…
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式: 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N0"(不含引号). 输入输出样例 输入样例#1: 2…
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果memset清空ex数组显然是会T的,所以开一个bef用来记录需要清空哪个地方. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n,m; ],to[],nx[],…
三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说把多项式\(f(x)\)写成两个多项式相加的形式: \[ f(x) = wf_0(x) + f_1(x) \] 这样在这道题中取\(W = 2^{15}\)就可以避免爆long long了. 乘起来的话就是 \[ f \cdot g = (w f_0 + f_1)(wg_0 + g_1) = (f_0 g…
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg_{i-j}+\sum_{j=mid+1}^rf_jg_{i-j}\] 复杂度\(O(n\log^2n)\). 分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html 多项式求逆做法先坑着. //693ms 4.91MB #include <…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…