Hierarchical cluster算法介绍】的更多相关文章

突然想记录几个聚类算法,由于实力有限就先介绍一下层次聚类算法(Hierarchical cluster algorithm),这个聚类算法思想简单,但实现起来感觉复杂度挺大:以前看过<集体智慧编程>里介绍过,里面是用python实现的,由于python里面的列表和字典用起来方便,故实现该算法还行:这里我用c++重新写了一下,感觉代码蛮臃肿,可能是自己的c++没有学习好吧!!!对于容器的使用还不够熟练,这里贴出来的目的是希望哪位大牛看到了指导一二,这里感激不尽.废话不多说了,进入正题吧! ***…
一.概念介绍 K-means算法是硬聚类算法,是典型的局域原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则.K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最有分类,使得评价指标J最小.算法采用误差平方和准则函数作为聚类准则函数. K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧…
聚类算法: 对于数值变量,k-means eg:k=4,则选出不在原数据中的4个点,计算图形中每个点到这四个点之间的距离,距离最近的便是属于那一类.标准化之后便没有单位差异了,就可以相互比较. 对于分类变量,k-mode: 对于数值和分类变量:k-prototype 连续变量与分类变量的权重,K=1则等权重:K<1则分类变量:K>1则数值变量. PAM:两种因素排序,坐标是(a,b),若k=2,则在其中(通过计算原数据集某一类所有点到某一点距离最短找到该点)选出2个点,计算图形中每个点到这四个…
考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码 3.机器学习之PageRank算法应用与C#实现(3)球队实力排名应用与C#代码 Pagerank是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准.在揉合了诸如Title标…
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集(样本中每个数据都已经分好类,并具有分类标签):2.使用样本数据进行训练:3.输入测试数据A:4.计算A与样本集的每一个数据之间的距离:5.按照距离递增次序排序:6.选取与A距离最小的k个点:7.计算前k个点所在类别的出现频率:8.返回前k个点出现频率最高的类别作为A的预测分类. 主要因素 训练集(或…
什么是ISP,他的工作原理是怎样的? ISP是Image Signal Processor的缩写,全称是影像处理器.在相机成像的整个环节中,它负责接收感光元件(Sensor)的原始信号数据,可以理解为整个相机拍照.录像的第一步处理流程,对图像质量起着非常重要的作用. ISP的功能比较杂,基本上跟图像效果有关的它都有份.它内部包含多个图像算法处理模块,其中比较有代表性的是:扣暗电流(去掉底电流噪声),线性化(解决数据非线性问题),shading(解决镜头带来的亮度衰减与颜色变化),去坏点(去掉se…
一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 2.时间复杂度 在计算机科学中,算法的时间复杂度是一个函数,它定性描述了该算法的运行时间.这是一个关于代表算法输入值…
RETE算法介绍一. rete概述Rete算法是一种前向规则快速匹配算法,其匹配速度与规则数目无关.Rete是拉丁文,对应英文是net,也就是网络.Rete算法通过形成一个rete网络进行模式匹配,利用基于规则的系统的两个特征,即时间冗余性(Temporal redundancy)和结构相似性(structural similarity),提高系统模式匹配效率.二. 相关概念2.1  事实(fact):事实:对象之间及对象属性之间的多元关系.为简单起见,事实用一个三元组来表示:(identifi…
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator H2ORandomForestEstimator 的常用方法和参数介绍: (一)建模方法: model =H2ORandomForestEstimator(ntrees=n,max_depth =m) model.train(x=random_pv.names,y='Catrgory',train…
STL 算法介绍 算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成.        <algorithm>是所有STL头文件中最大的一个,其中常用到的功能范围涉及到比较. 交换.查找.遍历操作.复制.修改.反转.排序.合并等等.       <numeric>体积很小,只包括几个在序列上面进行简单数学运算的模板函数,包括加 法和乘法在序列上的一些操作.       <functional…