首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[Everyday Mathematics]20150107
】的更多相关文章
[Everyday Mathematics]20150107
设 $f\in C^1[a,b]$, $f(a)=0$, 且存在 $\lm>0$, 使得 $$\bex |f'(x)|\leq \lm |f(x)|,\quad \forall\ x\in [a,b]. \eex$$ 试证: $f\equiv 0$.…
[Everyday Mathematics]20150304
证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\rd \lm =\sedd{\ba{ll} |\sin x|,&-1<x<1,\\ \frac{1}{2}|\sin x|,&|x|=1,\\ 0,&|x|>1. \ea} \eex$$…
[Everyday Mathematics]20150303
设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f(x)\rd x=0. \eex$$…
[Everyday Mathematics]20150302
$$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi). \eex$$…
[Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1]. \eex$$ 试证: $f\equiv 0$.…
[Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty e^{-x^3}\rd x. \eex$$…
[Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯一的一个内切于 $T$ 的椭圆, 使得切点为 $T$ 各边的中点, 椭圆的的两焦点为 $p'(z)$ 的两个根.…
[Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$…
[Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\st f''(\xi)=f(\xi)(1+2\tan^2\xi). \eex$$…
[Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.…