hdu1394 分治 or 线段树】的更多相关文章

利用分治求一次逆序数,然后每次把第一个元素放到末尾,设该交换元素的值为x,设上一次求得的逆序数为y,那么此时的逆序数等于y - x + (n - x - 1),减去x是因为x作为第一个元素,其后共有x个元素小于x,移动x会导致逆序数减少x个,而加上 (n - x - 1) 是因为将x移动到末尾,其前面(n - 1)个元素中会有(n - x - 1)个元素大于x. 此题的复杂度在于求第一次逆序数O(nlgn),后面每次移动元素求更新后的逆序数时间是O(1),因此总的复杂度为(nlgn). AC代码…
[BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种做法可以用线段树分治做,那么只需要\(LCT\)动态维护一下\(LCT\)就好了,时间复杂度?似乎是\(O(nlog^2m)\)的,每条边放在线段树上是一个\(log\)的,\(LCT\)还要一个\(log\),然而常数十分大,大得一匹,洛谷上只能过\(80\)分. #include<iostrea…
传送门 被暴力包菜了,然而还不会卡-- 有一个很暴力的DP:设\(f_i\)表示给\(1\)到\(i\)分好组最多可以分多少组,转移枚举最后一个组.接下来考虑优化这个暴力. 考虑:对于每一个位置\(i\),设\(pre_i\)表示在仅考虑\(d\)的条件下右端点为\(i\)的所有满足条件的区间中最左的左端点的前一个位置.显然\(pre_i\)随\(i\)的增大是不降的,而右端点为\(i\)的合法区间的左端点范围恰好为\([pre_i + 1 , i]\). 这里我们消除了\(d\)的条件的限制,…
传送门 只会线段树……关于单调队列的解法可以去看“重建计划”一题. 看到路径长度$\in [L,R]$考虑点分治.可以知道,在当前分治中心向其他点的路径中,始边(也就是分治中心到对应子树的根的那一条边)颜色相同的两条路径在拼合的时候在加上两条路径的权值之后需要减掉始边颜色的权值(因为被计算了两次),而初始边颜色不同的进行拼合就直接将两条路径的权值加起来即可.我们考虑分开维护这两种拼合. 在每一个分治中心里,我们对其引出的边按照颜色排序(目的是使得始边颜色相同的若干子树放在一起统一遍历),维护两个…
闲话 stO猫锟学长,满脑子神仙DS 网上有不少Dalao把线段树分治也归入CDQ分治? 还是听听YCB巨佬的介绍: 狭义:只计算左边对右边的贡献. 广义:只计算外部对内部的贡献. 看来可以理解为广义下的. 不过叫它线段树分治挺形象的啊! 线段树分治思想 我们在做CDQ的时候,将询问和操作通通视为元素,在归并过程中统计左边的操作对右边的询问的贡献. 而在线段树分治中,询问被固定了.按时间轴确定好询问的序列以后,我们还需要所有的操作都会影响一个时间区间.而这个区间,毫无疑问正好对应着询问的一段区间…
[BJOI2017]树的难题 LG传送门 点分治+线段树合并. 我不会写单调队列,所以就写了好写的线段树. 考虑对于每一个分治中心,把出边按颜色排序,这样就能把颜色相同的子树放在一起处理.用一棵动态开点线段树维护颜色不同的子树的信息,另一棵动态开点线段树维护颜色相同的子树的信息,同时按照题目要求更新答案.当子树颜色变化时,就把第二棵线段树合并到第一棵里面去就好了. 代码实现有点繁琐,我调了很久... #include<cstdio> #include<cctype> #includ…
[BZOJ4317]Atm的树 Description Atm有一段时间在虐qtree的题目,于是,他满脑子都是tree,tree,tree…… 于是,一天晚上他梦到自己被关在了一个有根树中,每条路径都有边权,一个神秘的声音告诉他,每个点到其他的点有一个距离(什么是距离不用说吧),他需要对于每个点回答:从这个点出发的第k小距离是多少: 如果atm不能回答出来,那么明天4019的闹钟将不会响,4019全寝可能就迟到了,所以atm希望你帮帮他. Input 第一行,两个正整数n,k,表示树的点数,询…
题目连接:https://www.luogu.org/problemnew/show/U60884 题意:有N个点,标号为1∼N,用N−1条双向带权通道连接,保证任意两个点能互相到达. Q次询问,问从编号为x的点到达标号L∼R的点其中一个点的最小距离是多少. 说明 :N,Q<1e5,边权<1e4; 思路:不难想到点分树,保存每个点到其“负责”的点的距离,这样的话可以套线段树,线段树保存其他点到点的距离. 但是,点分树上有个需要解决的问题是:如果x顺着点分树向父亲走,那么在父亲保存的线段树中要除…
给定一棵 \(n\) 个点的带点权的树,求树上的路径 \(x_1,...,x_k\) ,最大化 \(\sum_{i=1}^k ia_{x_i}\) Solution 树上路径问题可用点分治. 考虑如何合并两条路径对每条路径,记 \(l\) 为长度(点数),\(v\) 为 \(\sum_{i=1}^l ia_{x_i}\) ,\(s\) 为 \(\sum a_i\) ,那么对于两条路径 \((l_1,v_1,s_1),(l_2,v_2,s_2)\),它们的并为 \((l_1+l_2-1,v_1+s…
http://acm.hdu.edu.cn/showproblem.php?pid=5696 这是这次百度之星初赛2B的第一题,但是由于正好打省赛,于是便错过了.加上2A的时候差了一题,当时有思路,但是代码就是过不去..这次应该是无缘复赛了.. 先不水了,省赛回来,我看了一下这个题,当时有个类似于快排的想法,今天试了一下,勉强AC了..跑了3S多. 思路就是我枚举区间左值lt,那么[lt, n]区间内最值的角标分别为mi和ma.于是设to = max(mi, ma).也就是说在to右侧的所有区间…