开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshall算法: 思路如下:把所有从顶点i到j可能经过的顶点一一枚举,不断更新从i到j的最小权值:d[i][j] = min{d[i][j],d[i][k]+d[k][j]},是一种动规的思想 局限性:不能处理有负权回路(负圈)的情况,而且一般是使用邻接矩阵的方式来实现. 优劣性:思路简单,核心代码简洁易懂…
Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 算法的基本思想是:每…
问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Floyd算法适用于多源最短路径,是一种动态规划算法,稠密图效果最佳,边权可正可负.优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单.缺点:时间复杂度比较高,不适合计算大量数据.Floyd算法时间复杂度为n^3,Dijikstra算法为n^2. 优化代码: #include <iostre…
数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算法,可以这样做: Dijkstra[] all = new Dijkstra[graph.vertexNum()]; for (int i = 0; i < all.length; i++) { all[i] = new Dijkstra(graph, i); } for (int s = 0; s…
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floyd算法是一种在有权图中(有确定的非负的权值,不能存在环路)查找最短路径的算法.该算法的一次简单执行可以找出任意结点之间的最短路径(尽管它没有返回路径的具体信息). 思想: Floyd算法通过比较图中任意两点间所有可能存在的路径长度得到最短路径长度. 我们定义一个函数shortestPath(i,j,…
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也就是求源点到整个图的最短,次短距,第三短距离等(这些距离都是源点到某个点的最短距离)...求出的每个距离都对应一个点,也就是要到的到这个点,求的也就是原点到所有点的最短距离,并存在二维数组中,给出目的点就能直接通过查表获得最短距离. 第1步:以源点START(假设s1)为始点,求最短距离,如何求?…
昨天: 图论-概念与记录图的方法 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 分割线 第二天 引子:昨天我们简单讲了讲图的概念与记录图的方法,那么大家有一定的底子了,我们就开始初步接触图论算法了! 我们只讲Dijkstra和Floyd,因为其实在比赛中会这两个算法就很好了. 今天我们要讲的是:最短路径问题 Top1:最短路的概念 相信大家都知道有一款Made in China的导航软件--百度导航.那么他们是怎么为我们导航…
对于无权的图来说: 若从一顶点到另一顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1. 由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,我们把路径长度最短(即经过的边数最少)的那条路径叫做最短路径,其路径长度叫做最短路径长度或最短距离. 对于带权的图来说: 考虑路径上各边上的权值,则通常把一条路径上所经边的权值之和定义为该路径的路径长度或称带权路径长度. 从源点到终点可能不止一条路径,把带权路径长度最短的那条路径称…
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法,只不过它的时间复杂度高,为o(v^3),用的时候需要谨慎. floyd的精髓部分在于实现其思想的三个for循环,而它的主要思想:如果存在一个点k,使得dis[s][t]<dis[s][k]+dis[k][t],那么我们就更新dis[s][t]. #include<iostream>//fl…
P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE). SPFA和Dijkstra不同的是: Dijkstra  是从一个点的所有出边中找到一个最短出边,用它来继续更新下边的点    SPFA     是用一个点的所有出边都更新它下面的点 更新之前把这个点存进队列 更新时把他拿出来,再把更新的…
一.Floyd算法 假设从i到j的最短路径上要经过若干个顶点,这些中间顶点中最大的顶点编号为k,最小的顶点为t,因此要求算dist[i][j]的最小值,那么只需要求算dist[i][s]+dist[s][j](t<=s<=k)的所有值,并取其中最小者即可.因此可以设置一个中间顶点k(0<=k<n)分别插入到每队顶点(i,j)之中,并更新dist[i][j]的值.当n个顶点插入到每队顶点之中,求解便结束了.其实Floyd算法实质上是一个动态规划算法. /*每对顶点之间最短路径Floy…
Floyd算法 思想:将n个顶点的图G“分成”很多子图 每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1) 每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径Pij(称为待定路径),其长度为Dij,不断地往子图Gij中增加“中间过渡点”(子图不断扩大),不断地将Pij优化(始终保持在Gij中是最短的),当图中所有n个顶点都作为中间过渡点加到子图Gij中时,子图Gij就变成了原图G,待定路径Pij也就变成最终所求的(在原图中的)vi到vj的最短路径.(注:i…
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径.因为只有3个顶点,因此需要查看v1->v0->v2,得到…
概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用邻接矩阵来存储图的结构,edge[i][j]表示从结点i到结点j的最短路径长度,那么该如何计算edge[i][j]呢?首先我们可以假设当前的edge[i][j]不是最短的路径长度,必须经过k结点,比较edge[i][i]与edge[i][k]+edge[k][j]的大小(其中k的取值为所有点的编号)…
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要引入两个二维数组ShortPathTable和Patharc.ShortPathTable表示顶点到顶点的最短路径权值和的矩阵,Patharc表示对应顶点的最小路径的前驱矩阵.在为分析任何顶点之前,ShortPathTable初始化为图的邻接矩阵. 假设图G有N个顶点,那么需要对矩阵ShortPathTabl…
Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]}    -1<=k<=n-2 该式是一个迭代公式,Ak表示已考虑顶点0,1,.......,k等k+1个顶点之后各顶点之间的最短路径,即Ak[i][j]表示由Vi到Vj已考虑顶点0,1,.......,k等k+1个顶点的最短路径;在此基础上再考虑顶点k+1并求出各顶点在考虑了顶点k+1之后的最短路径,即得到Ak+1.每迭代一次,在从…
题目链接 题意很清晰,入门级题目,适合各种模板,可用dijkstra, floyd, Bellman-ford, spfa Dijkstra链接 Floyd链接 Bellman-Ford链接 SPFA链接 /* Name:HDU-2544-最短路 Copyright: Author: Date: 2018/4/17 10:34:47 Description: */ #include <cstring> #include <cstdio> #include <iostream&…
    几大最短路径算法比较 转自:http://blog.csdn.net/v_july_v/article/details/6181485 几个最短路径算法的比较: Floyd        求多源.无负权边的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).        Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题. Floyd-Warshall算法的时间复杂度为O…
几大最短路径算法比较 几个最短路径算法的比较:Floyd        求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题. Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2). Floyd-Warshall的原理是动态规划:设Di,j…
我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = cost[i][j]) 状态转移方程:d[k][i][j] = min ( d[k-1][i][k], d[k-1][k][j] ) 解释:我们分i到j的最短路正好经过顶点k一次和完全不经过k两种情况来讨论. 这个DP也可以使用滚动数组来进行递推:d[i][j] = min ( d[i][j], d[…
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单--贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定.但是虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)储存长度,需要优先队列(或者每次都比较)维护一个预选点的集合.还要用一个boolean数组…
Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][maxv]; // d[i][j]表示顶点i顶点j的最短距离 void Floyd(){ ; k < n; k++){ ; i < n; i++){ ; j < n; j++){ if (dis[i][k] != INF && dis[k][j] != INF &&a…
Dijkstra算法:伪代码 //G为图,一般设为全局变量,数组d[u]为原点到达个点的额最短路径, s为起点 Dijkstra(G, d[u], s){ 初始化: for (循环n次){ u = 是d[u]最小的且还未访问的顶点的标号; 记u已经被访问; for (从u出发能到达的所有顶点v){ if (v未被访问&&以u为终结点使s到顶点v的最短距离d[u]更优){ 优化d[v]; } } } 邻接矩阵版Dijkstra //邻接矩阵模板 ; ; int n, G[MAXV][MAXV…
一.多元最短路求法 多元都求出来了,单源的肯定也能求. 思想是动态规划的思想:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们易写出状态转移方程Dis(AB) =min(Dis(AX) + Dis(XB) ,Dis(AB))这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离. memset(Dis,0x3f,sizeof(Dis);…
图结构练习——最短路径 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  给定一个带权无向图,求节点1到节点n的最短路径.   输入  输入包含多组数据,格式如下. 第一行包括两个整数n m,代表节点个数和边的个数.(n<=100) 剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c.   输出  每组输出占一行,仅输出从1到n的最短路径权值.(保证最短路径存在)   示例输入 3 2 1 2 1 1…
floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int INF=0x3f3f3f3f; int ma[maxn][maxn],n; inline int min(int a,int b){return a<b?a:b;} inline int max(int a,int b){return a>b?a:b;} memset(g,0x3f,sizeof(g…
这是无向图的 void Floyd() { memset(v, 0x3f, sizeof v); ; i <= n; i++) ; j <= n; j++) v[i][j] = map[i][j]; ; k <= n; k++) ; i <= n; i++) ; j <= n; j++) v[i][j] = v[j][i] =min(v[i][j], v[i][k]+v[k][j]); }…
程序如下: #ifndef GRAPH_H #define GRAPH_H #include "Object.h" #include "SharedPointer.h" #include "Array.h" #include "DynamicArray.h" #include "LinkQueue.h" #include "LinkStack.h" #include "Sort…
<题目链接> 题目大意: 题目可能有多组测试数据,每个测试数据的第一行为经纪人数量N(当N=0时,输入数据结束),然后接下来N行描述第i(1<=i<=N)个经纪人与其他经纪人的关系(教你如何画图).每行开头数字M为该行对应的经纪人有多少个经纪人朋友(该节点的出度,可以为0),然后紧接着M对整数,每对整数表示成a,b,则表明该经纪人向第a个经纪人传递信息需要b单位时间,该图为有向图.构图完毕后,求当从该图中某点出发,将“消息”传播到整个经纪人网络的最小时间,输出这个经纪人号和最小时间…
是一道floyd变形的题目.题目让确定有几个人的位置是确定的,如果一个点有x个点能到达此点,从该点出发能到达y个点,若x+y=n-1,则该点的位置是确定的.用floyd算发出每两个点之间的距离,最后统计时,若dis[a][b]之间无路且dis[b][a]之间无路,则该点位置不能确定.最后用点个数减去不能确定点的个数即可.题目: Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4813   Accep…