CS231-Multi-calss SVM的求导】的更多相关文章

接着上周的更,上周我们更到,在对图像的线性分类中,我们只用multi-class 的svm,然后我们得到以下的损失函数 这里每个数值代表为下: X 是一个 N by D 的矩阵,N 代表 training data 的数量,D 代表每个 training data 的维度 W 是一个 D by C 的矩阵,C 代表 class 的数量 i 迭代 N 个 training data j 迭代 C 个 class  是 margin parameter 这里,我们想通过一个方法来得到损失函数L的最小…
Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最稳定点). 为此,特地为神经网络定义了神经网络能量函数$E(x|Label)$,其中$x$为输入. $E(x|Label)=-\frac{1}{2}Wx \Delta Y  \quad where \quad \Delta Y=y-label$   (省略Bias项) 值得注意的是,这套山寨牌能量函…
目录 OO--求导作业总结 程序结构的分析 第一次作业 第二次作业 第三次作业 对多项式合法性判断的讨论 程序bug的分析 未通过的互测bug bug的位置与程序结构的关系 继承和接口的使用 互测 手动构造样例 对拍器评测 两种评测方式的优缺点 Applying Creational Pattern 总结 OO--求导作业总结 程序结构的分析 第一次作业 1.设计思路 在第一次作业中,我设计了两个类:PolyDerivation(主类).Poly.main(String[])函数存在于PolyD…
OO_Unit1_表达式求导总结   OO的第一单元主要是围绕表达式求导这一问题布置了3个子任务,并在程序的鲁棒性与模型的复杂度上逐渐升级,从而帮助我们更好地提升面向对象的编程能力.事实也证明,通过这3个task的练习,我的OO水平也在各方面得到了不同程度的提高,包括但不限于模型的设计.对Java中各类容器的使用和重载以及测试手段的多样化等等.接下来我将分别就这3个task对我的代码进行分析,同时总结自己的一些收获与心得. Task 1 任务目标:实现由简单幂函数构成的多项式的求导 任务特点:…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度计算                 关于线性和非线性的隐层 非线性隐层使得网络可以计算更加复杂的函数 线性隐层不能增强网络的表述能力,它们被用来做降维,减少训练需要的参数数目,这在nlp相关的模型中 经常用到(embedding vector)     一个back prop的例子        …
02-线性结构1. 一元多项式求导 (25) 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样例: 3 4 -5 2 6 1 -2 0 输出样例: 12 3 -10 1 6 0 最简单的方式是用…
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解,如果理解成每个类的打分函数,则会直观许多.预测时我们把样本分配到得分最高的类. Notations: \(x\):输入向量,\(d\times 1\)列向量,\(d\)是feature数 \(W\):权重矩阵,\(c\times d\)矩阵,\(c\)是label数 \(b\):每个类对应超平面的…
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/…
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样…