numpy的使用数组的创建2】的更多相关文章

随机创建了长度为十的数组 获得十以类的随机整数 快速获取数组2乘3维的数组 生成20个1到10之间的数组 通过reshape 将这些数变成二位数组 shape这个方法可以查看数组中的元素是几行几列的…
数组是Numpy操作的主要对象,也是python数据分析的主要对象,本系列文章是本人在学习Numpy中的笔记. 文章中以下都基于以下方式的numpy导入: import numpy as np from numpy import * 1.普通数组的创建——np.arange(), np.array(), (1) arange()建立是顺序数组,函数原型:arange([start,]stop[,step],dtype=None) 其中start参数如果省略,则表示从0开始,默认的dtype为fl…
创建数组 创建ndarray 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. array函数创建数组 import numpy as np ndarray1 = np.array([1, 2, 3, 4]) ndarray2 = np.array(list('abcdefg')) ndarray3 = np.array([[11, 22, 33, 44], [10, 20, 30, 40]]) zeros和zer…
在学习数据分析时,NumPy作为最基础的数据分析库,我们能够熟练的掌握它是学习数据分析的必要条件.接下来就让我们学习该库吧. 学习NumPy库的环境: python:3.6.6 编辑器:pycharm NumPy安装:在cmd命令下,直接使用pip语句,pip install NumPy即可! NumPy是使用Python进行科学计算的基本软件包.它主要包含一下内容: 有一个强大的N维数组对象ndarray; 拥有复杂的广播功能函数: 整合C/C++和Fortran代码的工具: 线性代数.傅里叶…
Numpy学习之--数组创建 过程展示 import numpy as np a = np.array([2,3,9]) a array([2, 3, 9]) a.dtype dtype('int32') b = np.array([1.2,2.3,3]) b array([1.2, 2.3, 3. ]) b.dtype dtype('float64') 常见的错误是:直接将多个数值当做参数传递,正确的做法是将他们以列表或数组的方式传递 # a = np.array(1,2,3)#错误 b =…
原文:Python Numpy 教程 章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切片 NumPy 广播 NumPy 数组迭代 NumPy 位运算 NumPy 字符串函数 NumPy 数学函数 NumPy 统计函数 NumPy 排序.查找.计数 NumPy 副本和视图 NumPy 矩阵库函数 NumPy 线性代数 NumPy提供了使用现有数据创…
目录 (一)ndarray数组的创建 1.从列表以元组中创建: 2.使用函数创建: (二)ndarray数组的变换 1.维度的变换: 2.类型的变换: 目录: 1.ndarray数组的创建 2.ndarray数组的变换 (一)ndarray数组的创建 1.从列表以元组中创建: .array(list/tuple) .array(list/tuple,dytpe = np.int32), dtype用于指名类型 2.使用函数创建: (1).arange(n), 0~n-1 一维 (2).ones(…
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
 NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.NumPy这个词来源于两个单词-- Numerical和Python.NumPy提供了大量的库函数和操作,可以帮助程序员轻松地进行数值计算. NumPy中的ndarray是一个多维数组对象,该对象由两部分组成: 实际的数据: 描述这些数据的元数据. 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际数据. 1.创建数组 NumPy 中的数组 创建Numpy数组的不同方式 In [29]: np.array([i for…