NOIp模拟赛 巨神兵(状压DP 容斥)】的更多相关文章

\(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DAG,有多少种合法方案.我们考虑怎么构造DAG使得方案不重不漏. 我明知道一个DAG的拓扑序是唯一确定的.所以我们按照拓扑序每次转移一个点集. \(f[s][s']\)表示 构造 已经选择的点集为\(s\),当前最后一层点集为\(s'\)的DAG 的方案数. 转移时枚举不在\(s\)中的子集\(k\)…
传送门 状压dp好题. 怎么今天道道题都有点东西啊 对于今天题目神仙出题人先膜为上策:%%%%DzYoAk_UoI%%%% 设f[i][j]f[i][j]f[i][j]表示选取点的状态集合为iii,当前在jjj号点的状态总数. 然后枚举一个不在集合中的点转移. 但是直接这样做会算错. 为什么呢? 因为我们没有考虑状压时其它子树的影响. 因此再记一个数组g[i][j]g[i][j]g[i][j]表示选取集合为iii当前在jjj号点来进行状态转移. f[sta][p]=∑[E(u,v)]f[sta∣…
这么sb的题考场居然写挂了2233. 假设n=∏iaiki" role="presentation" style="position: relative;">n=∏iakiin=∏iaiki 那么集合中合法的数一定满足: t=∏i(1/aiki)" role="presentation" style="position: relative;">t=∏i(1/akii)t=∏i(1/aiki) 发…
[描述] 小石头喜欢看电影,选择有 N 部电影可供选择,每一部电影会在一天的不同时段播 放.他希望连续看 L 分钟的电影.因为电影院是他家开的,所以他可以在一部电影播放过程中任何时间进入或退出,当然他不希望重复看一部电影,所以每部电影他最多看一次,也不能在看一部电影的时候,换到另一个正在播放一样电影的放映厅. 请你帮助小石头让他重 0 到 L 连续不断的看电影,如果可以的话,计算出最少看几 部电影. [输入格式] 第一行是 2 个整数 N,L,表示电影的数量,和小石头希望看的连续时间 接下来是…
这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张图有多少个子图(即选定一个边集)是优美的?答案对 1,000,000,0071,000,000,0071,000,000,007 取模. n<=17n<=17n<=17 分析 这道题就是枚举拓扑序最后的点集来转移 #include <bits/stdc++.h> using na…
LINK:T3 比较好的题目 考试的时候被毒瘤的T2给搞的心态爆炸 这道题连正解的思路都没有想到. 一看到题求删除点的最少个 可以使得不连通. 瞬间想到最小割 发现对于10分直接跑最小割即可. 不过想要通过n^2需要一些奇技 如从Si跑到Tj 想要得到i到j+1的答案 只需要再从Tj跑到Tj+1即可. 可以发现这样做是有正确性的保证的 这样最多跑n次整张图的最大流. 且增广路不断减小 速度比较快. const int MAXN = 40010; int n, k, id, cc, len; ll…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles very much. She is especially fond of the puzzles that consist of domino pieces. Look at the picture that shows one of such puzzles. A puzzle is a 3 ×…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2\times 4 = 8\) 个,所以我们可以状压一下每个局部最小值的位置有没有被选. 从小到大填入每一个格子,那么如果一个点的周围有没有被填上的局部最小值,那么这个格子不可以被填.所以预处理一下每种状态下可以自由填多少格子,然后如果状态保持不变的话,就可以这样转移. 如果状态变化,就是说填了一个局…
LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. 直接计算是不易的 需要讨论到底哪个位置有最大值 然后还有重复 很繁琐.可以直接容斥 可以求出<=x的方案数 <=x-1的方案数也可以求出 做差即可得到存在x出现的方案数. 考虑两个矩形 如果不交 那么显然是各算各的 如果相交 讨论相交的这部分到底存在x 然后进一步的讨论从而计算答案. 可以发现这…
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示意) X . X . X . X . . . . . . . . . X . X . X . X . . . . . . . . . 所以考虑用\(S\)表示各个极小值点是否已填的状态,枚举\(1-n*m\)进行状压\(DP\). 当前填的数有两种选择: (\(1\))填入坑中,这样枚举\(S\)状…