CIKM 2012 papers to be downloaded】的更多相关文章

http://dl.acm.org/citation.cfm?id=2398426   http://dl.acm.org/citation.cfm?id=2396825   http://dl.acm.org/citation.cfm?id=2396826   http://dl.acm.org/citation.cfm?id=2398494   http://dl.acm.org/citation.cfm?id=2398557   http://dl.acm.org/citation.cfm…
NSE, $\bbu$ [Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001] [Papers]NSE, $u$, Lorentz space [Bjorland-Vasseur, JMFM, 2011] [Papers]NSE, $u$, Lorentz space [Bosia-Pata-Robinson, JMFM, 2014] NSE, $u_3$ [Papers]NSE, $u_3$, Lebesgue space [NNP, QM, 200…
Hi,I have the following code in my location activity.(this code was copied from Xamarin's Location Services demo) Collapse | Copy Code namespace LocationTutorialModified { [Activity (Label = "LocationActivity", MainLauncher = true)] public class…
$$\bex \p_3\pi\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad 3\leq q\leq \infty. \eex$$…
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad 3< q<\infty. \eex$$ 这篇文章有错误...可惜了. 暂时无法修正.…
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad \frac{5}{2}\leq q\leq 3. \eex$$ $$\bex \sen{\n \pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac…
作者:我爱机器学习原文链接:ICML历年Best Papers ICML (Machine Learning)(1999-2016) 2016 Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang Google Inc. Pixel Recurrent Neural Networks Aaron van den Oord Google DeepMind Ensuring Rapid Mixing and L…
作者:我爱机器学习原文链接:CVPR历年Best Papers CVPR (Computer Vision)(2000-2016) 年份 标题 一作 一作单位 2016 Deep Residual Learning for Image Recognition Kaiming He Microsoft Research 2015 DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time Richard A…
作者:我爱机器学习原文链接:SIGKDD历年Best Papers SIGKDD(Data Mining)(1997-2016) 年份 标题 一作 一作单位 2016 FRAUDAR: Bounding Graph Fraud in the Face of Camouflage Bryan Hooi Carnegie Mellon University 2015 Efficient Algorithms for Public-Private Social Networks Flavio Chie…
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers A curated list of the most cited deep learning papers (since 2010) I believe that there exist classic deep learning papers which are worth reading re…