Deep Learning的基本思想和方法 实际生活中,人们为了解决一个问题,如对象的分类(对象可是是文档.图像等),首先必须做的事情是如何来表达一个对象,即必须抽取一些特征来表示一个对象,如文本的处理中,常常用词集合来表示一个文档,或把文档表示在向量空间中(称为VSM模型),然后才能提出不同的分类算法来进行分类:又如在图像处理中,我们可以用像素集合来表示一个图像,后来人们提出了新的特征表示,如SIFT,这种特征在很多图像处理的应用中表现非常良好,特征选取得好坏对最终结果的影响非常巨大.因此,选…
如果我问你,如何把一个 etcd 集群部署在 Google Cloud 或者阿里云上,你一定会不假思索的给出答案:当然是用 etcd Operator! 实际上,几乎在一夜之间,Kubernetes Operator 这个新生事物,就成了开发和部署分布式应用的一项事实标准.时至今日,无论是 etcd.TiDB.Redis,还是 Kafka.RocketMQ.Spark.TensorFlow,几乎每一个你能叫上名字来的分布式项目,都由官方维护着各自的 Kubernetes Operator.而 O…
网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工作,目前很热,许多直接研究网络表示学习的工作和同时优化网络表示+下游任务的工作正在进行中. 清华大学计算机系的一个学习组 新浪微博@涂存超 整理的论文列表:https://github.com/thunlp/NRLpapers,并一直持续更新着,里面详细的列举了最近几年有关网络表示学习(networ…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
AsyncTask 实现原理 AsyncTask是Android提供的轻量级异步类,可以直接继承AsyncTask在类中实现异步操作,并提供接口反馈当前的异步执行程度(通过接口实现UI进度更新),最后反馈执行的结果给UI主线程. 使用优点 1.简单快捷的实现异步操作 2.过程可控 使用的缺点: 1.在使用多个异步操作并需要进行UI变更时会变得复杂 Handler 实现原理 在Handler异步实现时,涉及到Handler, Looper, Message, Thread四个对象, 实现异步的流程…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.csdn.net/u012328159/article/details/80210363 1. 训练集.验证集.测试集(Train, Dev, Test Sets) 当数据量小的时候, 70% 训练, 30% 测试:或 60% 训练.20% 验证.20%测试. 训练集( training set):用来…