首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
降维之pca算法
】的更多相关文章
降维之pca算法
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的数据进行零均值化,即每一列都减去其均值. 计算协方差矩阵C=1mXTXC=1mXTX 求出CC的特征值和特征向量 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P Y=XPY=XP就是降维到k维后的数据. 代码: # coding=utf- import matplotlib.p…
机器学习算法总结(九)——降维(SVD, PCA)
降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的.基于这些问题,降维思想就出现了. 降维方法有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维. 1.奇异值分解(SVD) 为什么先介绍SVD算法,因为在后面的PCA算法的实现用到了SVD算法.SVD算法不光可以用…
PCA算法 | 数据集特征数量太多怎么办?用这个算法对它降维打击!
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第27文章,我们一起来聊聊数据处理领域的降维(dimensionality reduction)算法. 我们都知道,图片格式当中有一种叫做svg,这种格式的图片无论我们将它放大多少倍,也不会失真更不会出现边缘模糊的情况.原因也很简单,因为这种图片是矢量图,一般的图片存储的是每一个像素点的颜色值,而在矢量图当中,我们存储的是矢量,也就是起点终点以及颜色.由于矢量图只记录起点终点,所以无论我们如何放大,图片都不会失真,而…
PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) 假如你要处理一个数据集, 数据集中的每条记录都是一个\(d\)维列向量. 但是这个\(d\)太大了, 所以你希望把数据维度给降下来, 既可以去除一些冗余信息, 又可以降低处理数据时消耗的计算资源(用computation budget 来描述可能更形象). 用稍微正式点的语言描述: 已知:一个数据…
模式识别(1)——PCA算法
作者:桂. 时间:2017-02-26 19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法…
三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. PCA的主要算法如下: 组织数据形式,以便于模型…
降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数据能够有大的方差. 为什么呢? 因为每一维的方差越大,说明数据之间区分度高,想象一个极端的情况,降维之后的数据集所有维度 都是一样的值,方差为0,那么数据就没什么意义了,因为退化成了一条数据. 二维图生动形象 推导过程 对于n个样本,m维特征 (v1, v2, v3 ... vn), vi是m…
降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单介绍PCA和SVD原理的基础上比较了两者的区别与联系,以及两者适用的场景和得到的效果. 一.SVD 1.1 特征值分解 在说奇异值分解之前,先说说特征值分解,特征值分解 \(A = PDP^{-1}\) ,只对A为正交矩阵来说,且得到的D是对角的.由于特征值分解和奇异值分解的本质都是矩阵分解,其本身…
PCA算法学习(Matlab实现)
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…
OpenCV学习(35) OpenCV中的PCA算法
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html 对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = p*q维的向量空间,比如100*100的灰度图像,它的向量空间为100*100=10000.下图是一个3*3的灰度图和表示它的向量表示: 该向量为行向量,共9维,用变量表示就是[v0, v1, v2, v3, v4, v5, v6, v7, v8],其中v0...v8,的范围都是0-255. …