基于R语言的梯度推进算法介绍】的更多相关文章

通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法.通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间. Boosting算法有很多种,比如梯度推进(Gradient Boosting).XGBoost.AdaBoost.Gentle Boost等等.每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别…
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列…
Twitter开源的时序数据突变检测(BreakoutDetection),基于无参的E-Divisive with Medians (EDM)算法,比传统的E-Divisive算法快3.5倍以上,并且具有鲁棒统计性,就是你加入一些离群点或异常点,并不影响该算法的检测效果,不过最关键的还是无参特性,有时候调参真是件摸着石头过河的事. 它认为突变有两种方式: 1.Mean Shift:突然跳变,比如CPU从40%一跃跳变为60%,像佛教里讲的“顿宗” 2.Ramp Up:缓慢从一个平稳状态渐变到另…
概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = c(good=0.99,bad=0.01),broken =c(good=0.6,bad=0.4)) data <- c("bad","bad","bad","bad") bayes <- function(prio…
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA).自回归过程(AR).自回归移动平均过程(ARMA)以及ARIMA过程.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数. 通常的建立ARIMA…
K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言实现 k-means算法是将数值转换为距离,然后测量距离远近进行聚类的.不归一化的会使得距离非常远. 补充:scale归一化处理的意义 两个变量之间数值差别太大,比如年龄与收入的数值差别就很大. 步骤 第一步,确定聚类数量,即k的值 方法:肘部法则+实际业务需求 第二步,运行K-means模型 求出…
一,前提准备         1.R语言包:ggplot2包(绘图),recommenderlab包,reshape包(数据处理)         2.获取数据:大家可以在明尼苏达州大学的社会化计算研究中心官网上面下载这些免费数据集,网站链接为http://grouplens.org/datasets/movielens/,也可以通过网盘下载https://yunpan.cn/Oc6R9apvCnVXGc访问密码 e1af.这里包含了数据集和数据说明,该数据集是由943位用户对1682部电影的一…
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事实上还有特别多有趣的文本挖掘工作能够做.也是个知识发现的过程,以后有机会再学习下. ================================================== * 中文分词经常使用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Sm…
教材就是传说中的机器学习和R语言--中文版,大家可以去图书馆借来看看~~~,例子都是来自书上的 首先介绍一下KNN算法,KNN还好吧,说白了就是一个算距离的公式然后以统计的方式呈现出来,以二维平面为例,平面内已知n个区域,每个区域里面有m(n)个点,现在求一个不在n区域内的点与哪一个区域最近,额,为了"恰当",考虑较远的点的影响会覆盖较近点的影响和没有意义的重复计算,只取k(k<n)个较近点参与计算,这就是这个方法的原理了,简单粗暴~~问题还有就是在数据很大的时候怎么选取K值,书…
lavaan简明教程 [中文翻译版] 译者注:此文档原作者为比利时Ghent大学的Yves Rosseel博士,lavaan亦为其开发,完全开源.免费.我在学习的时候顺手翻译了一下,向Yves的开源精神致敬.此翻译因偷懒部分删减,但也有增加,有错误请留言 「转载请注明出处」 目录 lavaan简明教程 [中文翻译版] 目录 摘要 在开始之前 安装lavaan包 模型语法 例1:验证性因子分析(CFA) 例2:结构方程(SEM) 更多关于语法的内容 6.1 固定参数 6.2 初值 6.3 参数标签…