EM 期望最大化算法】的更多相关文章

(EM算法)The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f…
适用场景:存在为未测变量的情况下,对模型参数进行估计. EM算法: input:观测数据Y,为观测数据Z,联合分布P(Y,Z|θ),条件分布P(Z|Y,θ) output:模型参数θ 步骤: (1)选择参数的初值进行迭代 (2)E步:求期望 (3)M步:最大化当前θ (4)重复(2)(3)知道算法收敛 例子:豌豆的不同形状问题.…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable).最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering) 领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大 化在 E 步上求得的最大似然值来计算参数的值.M 步上找到的参数估计值被用于下一个 E 步计算…
今天,我们详细的讲一下EM算法. 前提准备 Jupyter notebook 或 Pycharm 火狐浏览器或谷歌浏览器 win7或win10电脑一台 网盘提取csv数据 需求分析 实现高斯混合模型的 EM 算法(GMM_EM) 高斯混合模型是多个高斯模型的线性叠加而成的,高斯混合模型的概率分布表示如下: 其中,k表示模型的个数,αkα_kαk​ 是第 k 个模型的系数,表示出现该模型的概率,ϕ(x;μk,Σk) 是第 k 个高斯模型的概率分布. E步:样本 xix_ixi​来自于第 k 个模型…
EM算法概述 (1)数学之美的作者吴军将EM算法称之为上帝的算法,EM算法也是大家公认的机器学习十大经典算法之一.EM是一种专门用于求解参数极大似然估计的迭代算法,具有良好的收敛性和每次迭代都能使似然函数值单调不减的优良性质.在统计机器学习.自然语言处理等领域应用非常广泛,许多统计学算法都是EM算法的体现,比如说隐含马尔科夫模型的训练方法Baum-Welch算法.最大熵模型的训练方法GIS算法.高斯混合模型EM算法.主题模型训练推理的pLSA方法,都是EM算法.甚至连聚类中的k-means算法,…
不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完…
最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计. 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable).最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域. 最大期望算法经过两个步骤交替进行计…
一.最大似然估计与最大后验概率 1.概率与统计 概率与统计是两个不同的概念. 概率是指:模型参数已知,X未知,p(x1) ... p(xn) 都是对应的xi的概率 统计是指:模型参数未知,X已知,根据观测的现象,求模型的参数 2.似然函数与概率函数 似然跟概率是同义词,所以似然也是表示概率,但这个概率有些不一样. 似然是指:模型在不同参数下, p(x1) ... p(xn) 发生的概率 似然估计是指:模型的参数未知,X已知,根据观测现象(X),估计模型参数的过程 最大似然估计(为什么要最大):…
EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 使用EM算法的原因 首先举李航老师<统计学习方法>中的例子来说明为什么要用EM算法估计含有隐变量的概率模型参数. 假设有三枚硬币,分别记作A, B, C.这些硬币正面出现的概率分别是$\pi,p,q$.进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或C,正面选硬币B,反面边硬币C:然后掷选出的硬币,掷硬币的结果出现正面记作1,反面记作0:独立地重复$n$次试验,观测结果为$\{y_1,y_2,...,y_n\}$.问三…
讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期望最大化算法EM.概率分布要确定里边的参数有两种手段,即据估计.最大似然估计. 高斯混合模型简介: 高斯分布也叫正态分布,在机器学习的一些书和论文里边,一般把它称为高斯分布,尤其是老外习惯这样写. 高斯混合模型是多个高斯分布的一个叠加,它的概率密度函数可以写成: 其中x肯定是一个连续性的随机变量,一…