在线性回归中,因为对參数个数选择的问题是在问题求解之前已经确定好的,因此參数的个数不能非常好的确定,假设參数个数过少可能拟合度不好,产生欠拟合(underfitting)问题,或者參数过多,使得函数过于复杂产生过拟合问题(overfitting).因此本节介绍的局部线性回归(LWR)能够降低这种风险. 欠拟合与过拟合 首先看以下的图  对于图中的一系列样本点,当我们採用y=θ0+θ1x形式的时候,我们可能产生最左边图形式的拟合曲线:假设我们採用y=θ0+θ1x+θ2x2时候,我们就能够产生中间的…
首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比较大 针对第一个,我们增加了额外的特征,,这时我们可以看出情况就好了很多. 这个时候可能有疑问,是不是特征选取的越多越好,维度越高越好呢?所以针对这个疑问,如最右边图,我们用5揭多项式使得数据点都在同一条曲线上,为.此时它对于训练集来说做到了很好的拟合效果,但是,我们不认为它是一个好的假设,因为它不…
  局部加权线性回归  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问题. 局部加权线性回归是一种非参数学习方法,在对新样本进行预测时,会根据新的权值,重新训练样本数据得到新的参数值,每一次预测的参数值是不相同的. 权值函数: t用来控制权值的变化速率(建议对于不同的样本,先通过调整t值确定合适的t) 不同t值下的权值函数图像: 局部加权线性回归R实现: #Local…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么?怎么改进呢?这就是本篇的主题. 为了引出问题,先看一个关于线性的例子,选取不同的特征会得到不同结果.考虑给定一组数据,我们要进行线性回归,得到和之间的关系.提出了三种不同的特征的选择方式,结果如下: 左图,选取一个特征,假设为,我们可以看到数据不能很好的和数据相吻合. 中图,我们选取了两个特征和,…
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多项式的模型,对训练数据几乎完美拟合. 模型一没有很好的拟合训练数据,在训练数据以及在测试数据上都存在较大误差,这种情况称之为欠拟合(underfitting). 模型三对训练数据拟合的很不错,但是在测试数据上的准确度并不理想.这种对训练数据拟合较好,而在测试数据上准确度较低的情况称之为过拟合(ove…
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图.我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length.从散点图可以发现,可以用一条直线去拟合,这时我们可以构建一元线性回归模型:hθ(x) = θ0 + θ1x1 (x1= Pe…
贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/daunxx/article/details/51725086 贝叶斯线性回归(Bayesian Linear Regression) 标签(空格分隔): 监督学习…
# 注:使用线性回归算法的前提是,假设数据存在线性关系,如果最后求得的准确度R < 0,则说明很可能数据间不存在任何线性关系(也可能是算法中间出现错误),此时就要检查算法或者考虑使用其它算法: 一.功能与特点 1)解决回归问题 2)思想简单,实现容易 # 因为算法运用了很多的数学推到,使计算机实现变得容易 3)许多非线性模型的基础 4)结果具有很好的可解释性 # 算法系统通过学习数据,训练模型,可以学到真实世界中真实的知识 5)蕴含机器学习中的很多重要思 二.定义与思路 目的:根据样本特征,预测…
警告:本文为小白入门学习笔记 数据集: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html 由房屋的面积和bedroom个数影响房价的高低. 加载数据 x = load('ex3x.dat');y = load('ex3y.dat');m = length(y);x = [ones(m, 1), x]; (之所以加上一列1,因为x1…
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-squares(在spss里线性回归对应的模块就叫OLS即Ordinary Least Squares): 算法:基于训练数据集,根据学习策略,选择最优模型的计算方法.确定模型中每个θi取值的计算方法,往往归结为最优化问题.对于线性回归,我们知道它是有解析解的,即正规方程 The normal equa…
在此引出另一种模型:Locally weighted regression algorithm(LWLR/LWR),通过名字我们可以推断,这是一种更加关注局部变化的模型.的确如此,在普通的linear regression algorithm中,cost function是完全基于training set的,我们通过算法与training set求出h(x)的参数theta,然后训练结束,此后无论推测多少输出,theta和cost function的形式不再发生任何变化.cost functio…
之前所讨论的梯度下降算法,其算法模型是“线性回归模型”,我们可以理解为变量与因变量之间的关系是线性的.而现实情况是,使用线性模型去描述所有数据,很容易出现欠拟合(underfitting)的情况:同样,如果使用相当复杂的模型去描述数据集中所有的细节,则很容易产生另一种问题:过拟合(overfitting),即过分关注细节而忽略了数据变化的趋势.   所以,我们在此引出另一种模型:Locally weighted regression algorithm(LWLR/LWR),通过名字我们可以推断,…
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Because there is clearly no hope of finding an anlytical solution to the equation ∂E(w)=0, we resort to iterative numerical procedures. On-line gradient d…
简单回顾一下线性回归.我们使用了如下变量:\(x\)—输入变量/特征:\(y\)—目标变量:\((x,y)\)—单个训练样本:\(m\)—训练集中的样本数目:\(n\)—特征维度:\((x^{(i)},y^{(i)})\)—第\(i\)个训练样本.在接下来的内容中,仍沿用这些标识.我们给定的模型假设为: \begin{equation}h_{\theta}(x)=\theta_0+\theta_1x_1+\cdots+\theta_nx_n=\sum_{i=1}^n\theta_ix_i=\th…
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x…
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优化技术的具体载体,影响损失函数不同形式的因素主要有: 和谁比:和什么目标比较损失 怎么比:损失比较的具体度量方式和量纲是什么 比之后如何修正参数:如果将损失以一种适当的形式反馈给原线性模型上,以修正线性模式参数 在这篇文章中,笔者会先分别介绍线性回归(linear regression)和线性分类(…
最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logistic Regression 多分类逻辑回归 Multinomial Logistic Regression 特征x x=([x1,x2,...,xn,1])T 权重w w=([w1,w2,...,wn,b])T 目标y 实数(负无穷大到正无穷大) 两个类别 1,-1 两个类别 0,1 多个类别 c…
从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的目的主要是对Ⅱ章中出现的一些算法进行实现,适合的人群为已经看完本章节Stanford课程的学者.本人只是一名初学者,尽可能以白话的方式来说明问题.不足之处,还请指正. 在开始讨论具体步骤之前,首先给出简要的思维路线: 1.拥有一个点集,为了得到一条最佳拟合的直线: 2.通过“最小二乘法”来衡量拟合程…
热身预览 1.1.10. Bayesian Regression 1.1.10.1. Bayesian Ridge Regression 1.1.10.2. Automatic Relevance Determination - ARD From: scikit-learn 线性回归算法库小结 17. BayesianRidge 使用场景: 如果我们的数据有很多缺失或者矛盾的病态数据,可以考虑BayesianRidge类,它对病态数据鲁棒性很高,也不用交叉验证选择超参数.但是极大化似然函数的推断…
鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust Locally Weighted Regression and Smoothing Scatterplots (Willism_S.Cleveland) (2) 数据挖掘中强局部加权回归算法实现 (虞乐,肖基毅) R实现 #Robust Locally Weighted Regression 鲁棒局部…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示为  公式可以简化为 两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样 那么他的代价函数就是 同样是寻找使J最小的一系列参数 python代码为 比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1 …
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y)是一个训练样例, (x(i),y(i))是第 i个训练样例. 1.2 假设函数 使用某种学习算法对训练集的数据进行训练, 我们可以得到假设函数(Hypothesis Function), 如下图所示. 在房价的例子中,假设函数就是一个房价关于房子面积的函数.有了这个假设函数之后, 给定一个房子的面积…
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          …
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 II 2.5  梯度下降 2.6  梯度下降的直观理解 2.7  梯度下降的线性回归 2.8  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:…
这篇博客针对的AndrewNg在公开课中未讲到的,线性回归梯度下降的学习率进行讨论,并且结合例子讨论梯度下降初值的问题. 线性回归梯度下降中的学习率 上一篇博客中我们推导了线性回归,并且用梯度下降来求解线性回归中的参数.但是我们并没有考虑到学习率的问题. 我们还是沿用之前对于线性回归形象的理解:你站在山顶,环顾四周,寻找一个下山最快的方向走一小步,然后再次环顾四周寻找一个下山最快的方向走一小步,在多次迭代之后就会走到最低点.那么在这个理解中,学习率其实是什么呢?学习率就是你走的步子有多长. 所以…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable  1. 代价函数Cost Function  在单变量线性回归中,已知有一个训练集有一些关于$x$.$y$的数据(如×所示),当我们的预测值$h(x)$…
线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Representation 一个实际问题,我们可以对其进行数据建模.在机器学习中模型函数一般称为hypothsis.这里假设h为: 我们从简单的单变量线性回归模型开始学习. 1.2 代价函数Cost Function 代价函数也有很多种,下面的是平方误差Squared error function: 其…
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更新,希望大家多多批评指正. Supervised Learning(监督学习) 在监督学习中,我们的数据集包括了算法的输出结果,比如具体的类别(分类问题)或数值(回归问题),输入和输出存在某种对应关系. 监督学习大致可分为回归(classification)和分类(regression). 回归:对…