W-GAN系 (Wasserstein GAN、 Improved WGAN)】的更多相关文章

学习总结于国立台湾大学 :李宏毅老师 WGAN前作:Towards Principled Methods for Training Generative Adversarial Networks  WGAN:  Wasserstein GAN  Improved WGAN:  Improved Training of Wasserstein GANs  本文outline 一句话介绍WGAN: Using Earth Mover’s Distance to evaluate two distri…
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是半监督学习.当我们说学习概率分布,典型的思维是学习一个概率密度.这通常是通过定义一个概率密度的参数化族\((P_{\theta})_{\theta\in R^d}\),然后基于样本最大似然:如果当前有真实样本\(\{x^{(i)}\}_{i=1}^m\),那么是问题转换成: \[\underset{\thet…
Sorta Insightful Reviews Projects Archive Research About  In a world where everyone has opinions, one man...also has opinions Read-through: Wasserstein GAN Feb 22, 2017 I really, really like the Wasserstein GAN paper. I know it’s already gotten a lot…
前段时间,Wasserstein GAN以其精巧的理论分析.简单至极的算法实现.出色的实验效果,在GAN研究圈内掀起了一阵热潮(对WGAN不熟悉的读者,可以参考我之前写的介绍文章:令人拍案叫绝的Wasserstein GAN - 知乎专栏).但是很多人(包括我们实验室的同学)到了上手跑实验的时候,却发现WGAN实际上没那么完美,反而存在着训练困难.收敛速度慢等问题.其实,WGAN的作者Martin Arjovsky不久后就在reddit上表示他也意识到了这个问题,认为关键在于原设计中Lipsch…
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不定导致模型失败,WGAN,找到了更为合适的Loss函数,使得梯度呈线性,事实上WGAN对判别器权重进行了区间限制,使得权重控制在一定范围内,使得梯度更大概率的呈线性增长. WGAN特点 无需平衡D,G的训练组合 解决collapse model(模型崩溃)问题,保证样本多样性 结构更改简单有效 改进…
这篇笔记基于上一篇<关于GAN的一些笔记>. 1 GAN的缺陷 由于 $P_G$ 和 $P_{data}$ 它们实际上是 high-dim space 中的 low-dim manifold,因此 $P_G$ 和 $P_{data}$ 之间几乎是没有重叠的 正如我们之前说的,如果两个分布 $P,Q$ 完全没有重叠,那么 JS divergence 是一个常数 $\log⁡(2)$. 由于最优的 generator 是 我们在普通的 GAN 中,最小化的是 $P_{data}$ 和 $P_G$…
一.前期学习经过 GAN(Generative Adversarial Nets)是生成对抗网络的简称,由生成器和判别器组成,在训练过程中通过生成器和判别器的相互对抗,来相互的促进.提高.最近一段时间对GAN进行了学习,并使用GAN做了一次实践,在这里做一篇笔记记录一下. 最初我参照JensLee大神的讲解,使用keras构造了一个DCGAN(深度卷积生成对抗网络)模型,来对数据集中的256张小狗图像进行学习,都是一些类似这样的狗狗照片: 他的方法是通过随机生成的维度为1000的向量,生成大小为…
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文<Wasserstein GAN>却在Reddit的Machine Learning频道火了,连Goodfellow都在帖子里和大家热烈讨论,这篇论文究竟有什么了不得的地方呢? 要知道自从2014年Ian Goodfellow提出以来,GAN就存在着训练困难.生成器和判别器的loss无法指示训练进程.生成样本缺乏多样性等问题.从那时起,很多论文都在尝试解决,但是效果不尽人意,比如最有名的一个改进DCGAN依靠的是对判…
先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编写的代码中,d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = D_logits, labels = tf.ones_like(D))),由于我们判别器最后一层是 sigmoid ,所以可以看出来…
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.) 作者:Jonathan Gomes-Selman, Arjun Sawhney, WoodyWang 摘要 本文提出使用Wasserstein(沃瑟斯…