R工具包一网打尽】的更多相关文章

0.前言 虽然很早就知道R被微软收购,也很早知道R在统计分析处理方面很强大,开始一直没有行动过...直到 直到12月初在微软技术大会,看到我软的工程师演示R的使用,我就震惊了,然后最近在网上到处了解和爬一些R的资料,看着看着就入迷了,这就是个大宝库了,以前怎么没发现,看来还是太狭隘了.直到前几天我看到这个Awesome R文档,我就静不下来了,对比了目前自己的工作和以后的方向,非常适合我.所以毫不犹豫的把这个文档汉化了,所以大家一起享受吧. 说明:本文已经提交到github,地址:https:/…
这里有很多非常不错的R包和工具. 该想法来自于awesome-machine-learning. 这里是包的导航清单,看起来更方便 >>>导航清单 通过这些翻译了解这些工具包,以后干活也就方便多了.不过翻译这个东西的确要靠耐心,翻译,编辑花费了至少一周的空余时间. 在编辑本文的过程中,惊喜的发现Awesome系列的其他资源:地址在github: 1.DotNet 资源大全中文版 2.Java资源大全中文版 3.JavaScript 资源大全中文版 一  集成开发环境 RStudio –…
直到12月初在微软技术大会,看到我软的工程师演示R的使用,我就震惊了,然后最近在网上到处了解和爬一些R的资料,看着看着就入迷了,这就是个大宝库了,以前怎么没发现,看来还是太狭隘了.直到前几天我看到这个Awesome R文档,我就静不下来了,对比了目前自己的工作和以后的方向,非常适合我.所以毫不犹豫的把这个文档汉化了,所以大家一起享受吧. 这里有很多非常不错的R包和工具. 该想法来自于awesome-machine-learning. 这里是包的导航清单,看起来更方便 >>>导航清单 通过…
[翻译]Awesome R资源大全中文版来了,全球最火的R工具包一网打尽,超过300+工具,还在等什么? 阅读目录 0.前言 1.集成开发环境 2.语法 3.数据操作 4.图形显示 5.HTML部件 6.复用组件研究 7.Web技术和服务 8.并行计算 9.高性能 10.语言API 11.数据库管理 12.机器学习 13.自然语言处理 14.贝叶斯 15.最优化 16.金融 17.生物信息学 18.网络分析 19.R 开发 20.日志 21.数据包 22.其他工具 23.其他编译器 24.R学习…
.NET技术, 开源项目, 数据挖掘, 机器学习, 微软Power BI, 足球赛事分析, Matlab与C#编程 博客园 管理 本站首页 头条推荐 Power BI .NET开源 机器学习 博客美化 X组件 Matlab 随笔 - 189  文章 - 15  评论 - 4316 [翻译]Awesome R资源大全中文版来了,全球最火的R工具包一网打尽,超过300+工具,还在等什么? 阅读目录 0.前言 1.集成开发环境 2.语法 3.数据操作 4.图形显示 5.HTML部件 6.复用组件研究…
ggfortify 有着简单易用的统一的界面来用一行代码来对许多受欢迎的R软件包结果进行二维可视化的一个R工具包.这让许多的统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以 {ggplot} 的风格画出好看的图,大大地提高了工作的效率. 虽然ggfortify已经在CRAN上,但是由于最近很多的功能都还在快速增加,还是推荐大家从Github上下载和安装 library(devtools) install_github('sinhrks/ggfortify') lib…
最近的关键字:分类算法,outlier detection, machine learning 简介: 此文将 k-means,decision tree,random forest,SVM(support vector mechine),人工神经网络(Artificial Neural Network,简称ANN )这几种常见的算法 apply 在同一个数据集 spam,看各种方法预测错误率,或准确率,旨在追求预测准确性,辨识出这几种方法的实用性,对背后的理论依据,大量的数学公式,不作讨论(能…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
  小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…