BZOJ 4584 【APIO2016】 赛艇】的更多相关文章

参考:https://www.cnblogs.com/lcf-2000/p/6809085.html 设f[i][j][k]为第i个学校派出的赛艇数量在区间j内,并且区间j内共有k个学校的方案数 把数量区间离散化,转移是: 当k==1 \[ f_{i,j,k}=\sum_{i'=1}^{i-1}\sum_{j'=1}^{j-1}\sum_{k'=1}^{i'}f_{i',j',k'} \] 否则 \[ f_{i,j,k}=C_{len_j}^k\frac{\sum_{i'=1}^{i-1}f_{…
Subtask 1 直接$N^2$ $DP$,就可以了 Subtask 2 用$f[i][j]$表示当前位置为$i$,结束元素为$j$的方案数. Subtask 3 看下面 Subtask 4 首先可以枚举一段序列选择同一个重叠的区间,然后一些可以不选,如果选的话要求上升. 然后很容易得到方程,离散化之后就可以$N^4$直接做了. 然后并不会优化,看了题解. 想了想写不出来. 抄代码啦! #include <map> #include <ctime> #include <cm…
4584: [Apio2016]赛艇 Time Limit: 70 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着个划艇学校,编号依次为到.每个学校都 拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一 样的.每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加.如果编号为的学校选择…
[BZOJ4584][Apio2016]赛艇 Description 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着个划艇学校,编号依次为到.每个学校都拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一样的.每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加.如果编号为的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在Ai至Bi之间任意选择(Ai<=Bi).值得注意的是,编号为i的学校如果选择派出划艇参…
题目链接:赛艇 讲道理好好的Boat为啥要翻译成赛艇呢……题面中不也是划艇么…… 这道题考虑一下dp.由于划艇数量过于庞大,所以肯定不能直接记录到dp状态中.所以一个想法就是把数量离散化,然后把每个学校的数量在哪一段内记录下来.也就是说\(f_{i,j,k}\)表示前\(i\)个学校,第\(i\)所学校派出的划艇数量在区间\(j\)内,并且区间\(j\)内共有\(k\)个学校的方案数.然后分类讨论一下转移: 当\(k\ne 1\)时,有: \begin{aligned}f_{i,j,k} &=\…
题目传送门:LOJ #2249. 题意简述: 有 \(n\) 个位置,第 \(i\) 个位置可以填在 \([a_i,b_i]\) (\(1\le a_i\le b_i\le 10^9\))之间的整数,也可以填 \(0\). 如果第 \(i\) 个位置填了非 \(0\) 的数,则这个数必须大于之前所有位置(\(1\) 到 \(i-1\) 的位置)上的数. 至少要有一个位置填上非 \(0\) 的数.问最终有几种填数方案,两种填数方案不同当且仅当某个位置上填的数不同. 题解: 要求即为选出一些位置填数…
如果值域不大,容易想到设f[i][j]为第i个学校选了j的方案数,枚举上一个学校是哪个选了啥即可,可以前缀和优化.于是考虑离散化,由于离散化后相同的数可能可以取不同的值,所以枚举第一个和其所选数(离散化后)相同的学校是哪个,考虑这一段里选几个学校怎么选数,组合数即可.各种显然的优化后即可做到O(n3),瞎卡卡常就……根本过不了.被卡常已经习惯了.不要把有限的生命投入无限的卡常之中.越菜的人越容易被卡常.——沃兹基硕德.luogu8s,darkbzoj40s,bzoj?s. #include<io…
首先将值域离散化成$O(n)$个连续段. 设$f[i][j][k]$表示第$i$个学校派出的数量在第$j$个连续段,在第$j$个连续段一共有$k$个学校的方案数.用组合数以及前缀和转移即可. 时间复杂度$O(n^3)$. #include<cstdio> #include<algorithm> const int N=502,M=N*2,P=1000000007; int n,m,i,j,k,t,len,inv[N],a[N],b[N],c[M],C[M][N],f[N][M],g…
首先每个学校的边界范围是\(1e9\),肯定不能直接\(dp[i][j]\)表示前i所学校,第\(i\)所学校派出\(j\)艘船,但\(b<=500\)所有考虑把\(a,b\)离散,第二维改为当前这个学校派出数量在那个区间里 转移的时候,如果前面所有的学校都不在此区间内,那贡献为\(\sum_{i'=1}^{i}\sum_{j'=1}^{j}dp[i'][j']\) 但是如果有学校要选在该区间内,问题便转化为在一段长度为len的区间内选出k个数,使他们递增,当然,有些数是可以不选的,该方案数为\…
参考:https://blog.csdn.net/wxh010910/article/details/55806735 以下课件,可并堆部分写的左偏树 #include<iostream> #include<cstdio> using namespace std; const int N=600005; int n,m,tot,fa[N],len[N],rt[N],d[N],cnt; long long p[N],sum; int read() { int r=0,f=1; cha…