[CNN] Tool - Deep Visualization】的更多相关文章

From: http://www.infoq.com/cn/news/2016/12/depth-neural-network-fake-photos 当时大部分的DNN在识别图像中对象的过程中主要依据的特征是一些局部特征(如豹子身上的斑点.校车的黑黄色),而忽略了整体特征(如海星的五角星形状.豹子长了四条腿). 知道了DNN所忽略的特征,从而有针对性的进行算法的改进,就有可能大幅提升DNN生成指定图像的能力. 2016年,该研究组先后发布了两篇论文介绍 Deep Generator Netwo…
转载地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
原文地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
承接上一篇博客.该论文思路清晰,实验充分,这里大致写一些比较不错的idea.从标题就能看出本文的主要贡献:轻量.鲁棒.利用一个轻量CNN从大规模数据且含大量噪声中来学习一个深度面部表征. 直接谈谈贡献: 本文介绍MFM操作,一种特殊的maxout来学习少参数网络.相比于ReLU从数据中学来阈值,MFM采用一种竞争关系来得到更好的泛化能力,适应于不同的数据分布. 轻量CNN和MFM一起用来学习一种统一的面部表征.我们按照AlexNet.VGG.ResNet设计了三种轻量网络.所提出的模型在时空复杂…
当数据一层一层通过更多的卷积层时,你可以得到的特征图像代表的特征就会更加的复杂. 在网络的最后,你也许可以得到一个抽象的物体.如果你想通过可视化方法在卷积神经网络中看到更多的信息.这里有一个工具方便你查看https://github.com/yosinski/deep-visualization-toolbox,它的效果如下图所示:…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程…
From: http://blog.csdn.net/zouxy09/article/details/49080029 一个概念需经过反复的推敲以及时间的沉淀,之后才能真正理解 [OpenCV] Image Processing - Spatial Filtering [CNN] What is Convolutional Neural Network 何谓卷积? 首先,我们有一个二维的滤波器矩阵(卷积核)和一个要处理的二维图像. 然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…