欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入.我的博客写一些自己用得到东西,并分享给大家,如果有问题欢迎留言与我讨论:) Kmeans聚类方法是(我认为)最广泛使用以及稳定.有效的聚类方法.聚类是无监督学习方法,不需要对数据本身的标签有任何了解.如果你不是很理解kmeans算法本身,建议随便找一本数据挖掘/机器学习的书来看一看,或者看下baidu[1]的内容基本就能理解. Kmea…
kmeans 中k值一直是个令人头疼的问题,这里提出几种优化策略. 手肘法 核心思想 1. 肉眼评价聚类好坏是看每类样本是否紧凑,称之为聚合程度: 2. 类别数越大,样本划分越精细,聚合程度越高,当类别数为样本数时,一个样本一个类,聚合程度最高: 3. 当k小于真实类别数时,随着k的增大,聚合程度显著提高,当k大于真实类别数时,随着k的增大,聚合程度缓慢提升: 4. 大幅提升与缓慢提升的临界是个肘点: 5. 评价聚合程度的数学指标类似 mse,均方差,是每个类别的样本与该类中心的距离平方和比上样…
本文主要基于Anand Rajaraman和Jeffrey David Ullman合著,王斌翻译的<大数据-互联网大规模数据挖掘与分布式处理>一书. KMeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数. KMeans算法本…
kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类: (3) 更新中心点为每类的均值: (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 为什么迭代后误差逐渐减小: SSE=  对于 而言,求导…
Calinski-Harabasz准则有时称为方差比准则 (VRC),它可以用来确定聚类的最佳K值.Calinski Harabasz 指数定义为: 其中,K是聚类数,N是样本数,SSB是组与组之间的平方和误差,SSw是组内平方和误差.因此,如果SSw越小.SSB越大,那么聚类效果就会越好,即Calinsky criterion值越大,聚类效果越好. 1.下载permute.lattice.vegan包 install.packages(c("permute","lattic…
k-means简介 k-means是无监督学习下的一种聚类算法,简单说就是不需要数据标签,仅靠特征值就可以将数据分为指定的几类.k-means算法的核心就是通过计算每个数据点与k个质心(或重心)之间的距离,找出与各质心距离最近的点,并将这些点分为该质心所在的簇,从而实现聚类的效果. k-means具体步骤 1.指定要把数据聚为几类,确定k值: 2.从数据点中随机选择k个点,作为k个簇的初始质心: 3.计算数据点与各质心之间的距离,并将最近的质心所在的簇作为该数据点所属的簇: 4.计算每个簇的数据…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
前言 kmeans是最简单的聚类算法之一,但是运用十分广泛.最近在工作中也经常遇到这个算法.kmeans一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点. 本文记录学习kmeans算法相关的内容,包括算法原理,收敛性,效果评估聚,最后带上R语言的例子,作为备忘.   算法原理 kmeans的计算方法如下: 1 随机选取k个中心点 2 遍历所有数据,将每个数据划分到最近的中心点中 3 计算每个聚类的平均值,并作为新的中心点 4 重复2-3,直到这k个中线点不再变…
SparkMLlib聚类学习之KMeans聚类 (一),KMeans聚类 k均值算法的计算过程非常直观: 1.从D中随机取k个元素,作为k个簇的各自的中心. 2.分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇. 3.根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数. 4.将D中全部元素按照新的中心重新聚类. 5.重复第4步,直到聚类结果不再变化. 6.将结果输出. (二),Spark下KMeans的应用 1,数据集下载:数据来源电影…
#导入scipy库,库中已经有实现的kmeans模块,直接使用, #根据六个人的分数分为学霸或者学渣两类 import numpy as np from scipy.cluster.vq import vq,kmeans,whiten list1=[88,64,96,85] list2=[92,99,95,94] list3=[91,87,99,95] list4=[78,99,97,81] list5=[88,78,98,84] list6=[100,95,100,92] #将数据组成数组 d…