Flink中的数据传输与背压】的更多相关文章

一图道尽心酸: 大的原理,上游的task产生数据后,会写在本地的缓存中,然后通知JM自己的数据已经好了,JM通知下游的Task去拉取数据,下游的Task然后去上游的Task拉取数据,形成链条. 但是在何时通知JM?这里有一个设置,比如pipeline还是blocking,pipeline意味着上游哪怕产生一个数据,也会去通知,blocking则需要缓存的插槽存满了才会去通知,默认是pipeline. 虽然生产数据的是Task,但是一个TaskManager中的所有Task共享一个NetworkE…
2. Flink中的数据传输 在一个运行的application中,它的tasks在持续交换数据.TaskManager负责做数据传输.TaskManager的网络组件首先从缓冲buffer中收集records,然后再发送.也就是说,records并不是一个接一个的发送,而是先放入缓冲,然后再以batch的形式发送.这个技术可以高效使用网络资源,并达到高吞吐.类似于网络或磁盘 I/O 协议中使用的缓冲技术. 这里需要注意的是:传输缓冲buffer中的记录,隐含表示的是,Flink的处理模型是基于…
先上一张图整体了解Flink中的反压   可以看到每个task都会有自己对应的IG(inputgate)对接上游发送过来的数据和RS(resultPatation)对接往下游发送数据, 整个反压机制通过inputgate,resultPatation公用一个一定大小的memorySegmentPool来实现(Flink 中memorySegment作为内存使用的抽象,类比bytebuffer), 公用一个pool当接收上游数据时Decoder,往下游发送数据时Encoder,都会向pool中请求…
前言 Flink 是流式的.实时的 计算引擎 上面一句话就有两个概念,一个是流式,一个是实时. 流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以这里面就有一个问题,边界怎么确定? 无非就两种方式,根据时间段或者数据量进行确定,根据时间段就是每隔多长时间就划分一个边界,根据数据量就是每来多少条数据划分一个边界,Flink 中就是这么划分边界的,本文会详细讲解. 实时:就是数据发送过来之后立马就进行相关的计算,然后将结果输出.这里的计算有两种:…
GPRS 锁定 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 . GPRS(General Packet Radio Service)是通用分组无线服务技术的简称,它是GSM移动电话用户可用的一种移动数据业务,属于第二代移动通信中的数据传输技术.GPRS可说是GSM的延续.GPRS和以往连续在频道传输的方式不同,是以封包(Packet)式来传输,因此使用者所负担的费用是以其传输资料单位计算,并非使用其整个频道,理论上较为便宜.GPRS的传输速率可提升至56甚至114Kbps.[1] …
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 戳原文: 1-Flink入门 2-本地环境搭建&构建第一个…
感谢英文原文作者:https://data-artisans.com/blog/a-practical-guide-to-broadcast-state-in-apache-flink 不过,原文最近好像不能访问了.应该是https://www.da-platform.com/网站移除了blog板块了. 从版本1.5.0开始,Apache FlinkⓇ具有一种新的状态,称为广播状态. 在这篇文章中,我们解释了广播状态是什么,并展示了如何将其应用于评估事件流上的动态模式的应用程序的示例.我们将引导…
摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在streaming中Flink支持的通知时间 Flink官网写了个了解streaming和各种时间的博客 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101#F2 1.Processing time:执行时候的机器系统时…
前言 Flink 在流程序中支持不同的 Time 概念,就比如有 Processing Time.Event Time 和 Ingestion Time. 下面我们一起来看看这几个 Time: Processing Time Processing Time 是指事件被处理时机器的系统时间. 当流程序在 Processing Time 上运行时,所有基于时间的操作(如时间窗口)将使用当时机器的系统时间.每小时 Processing Time 窗口将包括在系统时钟指示整个小时之间到达特定操作的所有事…
前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowing(窗口化)"."at-least-once(至少一次)"."exactly-once(只有一次)" ). 对于刚刚接触流处理的人来说,这种转变和新术语可能会非常混乱. Apache Flink 是一个为生产环境而生的流处理器,具有易于使用的 API,可以用于…