Spark Streaming初探】的更多相关文章

1.  介绍 Spark Streaming是Spark生态系统中一个重要的框架,建立在Spark Core之上,与Spark SQL.GraphX.MLib相并列. Spark Streaming是Spark Core的扩展应用,具有可扩展性.高吞吐量.可容错性等特点. 可以监控来自Kafka.Flume.HDFS.Twitter.Socket套接字等数据,通过复杂算法及一系列的计算分析数据,且可将分析结果存入HDFS.数据库或前端页面. 2. 工作原理 Spark的核心是RDD(或DataF…
Spark Streaming揭秘 Day21 动态Batch size实现初探(下) 接昨天的描述,今天继续解析动态Batch size调整的实现. 算法 动态调整采用了Fix-point迭代算法,其本质是一种回归计算,算法如下: 有点类似机器学习,学习当前SparkStreaming的状况,根据状况把Batch Duration调到最小,来获得最高的稳定性. 下面这张图比较重要,是主要描述了算法的实现思想: 基本思想是按100ms一个小的批次,根据处理情况,Job Generator会调整自…
Spark Streaming揭秘 Day20 动态Batch size实现初探(上) 今天开始,主要是通过对动态Batch size调整的论文的解析,来进一步了解SparkStreaming的处理机制,因为比较偏理论,么有代码演示. 缘起 从目前的业务发展来看,线上处理目前来看已经越来越重要,而一个突出的矛盾就是,传统框架Oracle+j2ee的框架下,存在一个致命的问题,就是无法突破单台机器的局限,可能容纳此刻流入的数据,于是分布式流处理程序越来越火热. 流处理的核心是追求更快的处理速度.但…
本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如:join操作和普通Map操作的处理数据的时间消耗是否会呈现出一致的线性规律呢,也就是说,并非数据量规模越大就是简单加大BatchDuration 就可以解决问题的,数据量是一个方面,计算的算子也是一个考量的因素. 使用BatchSize来适配我们的流处理程序 : 线上的处理程序越来越重要,流入的数据…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学习.持续计算.分布式远程调用和ETL等领域. 在Storm的集群里面有两种节点:控制节点(Master Node)和工作节点(Worker Node).控制节点上面运行一个名为Nimbus的进程,它用于资源分配和状态监控:每个工作节点上面运行一个Supervisor的进程,它会监听分配给它所在机器的…
1.安装好flume2.安装好kafka3.安装好spark4.流程说明: 日志文件->flume->kafka->spark streaming flume输入:文件 flume输出:kafka的输入 kafka输出:spark 输入5.整合步骤: (1).将插件jar拷贝到flume的lib目录下 a. flumeng-kafka-plugin.jar b. metrics-annotation-2.2.0.jar (2).将配置文件producer.properties拷贝到flu…
// scalastyle:off println package org.apache.spark.examples.streaming import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.stream…
本期内容 : Direct Acess Kafka Spark Streaming接收数据现在支持的两种方式: 01. Receiver的方式来接收数据,及输入数据的控制 02. No Receiver的方式 以上两种方式中,No Receiver的方式更符合读取.操作数据的思路,Spark作为一个计算框架他的底层有数据来源,也就是直接操作数据来源中的数据, 如果操作数据来源的话肯定需要一个封装器,这个封装的类型一定是RDD的封装类型,Spark Streaming为了封装类型推出了自定义的RD…