CNN学习笔记:线性回归】的更多相关文章

CNN学习笔记:Logistic回归 线性回归 二分类问题 Logistic回归是一个用于二分分类的算法,比如我们有一张图片,判断其是否为一张猫图,为猫输出1,否则输出0. 基本术语 进行机器学习,首先要有数据,比如我们收集了一批关于西瓜的数据,例如 (色泽=青绿:根蒂=收缩:敲声=浊响) (色泽=乌黑:根蒂=稍蜷:敲声=沉闷) (色泽=浅白:根蒂=硬挺:敲声=清脆) 每对括号内是一条记录,这组记录的集合称为一个数据集,每条记录是关于一个事件或对象的描述,称为一个示例或样本,反映事件或对象在某方…
CNN学习笔记:激活函数 激活函数 激活函数又称非线性映射,顾名思义,激活函数的引入是为了增加整个网络的表达能力(即非线性).若干线性操作层的堆叠仍然只能起到线性映射的作用,无法形成复杂的函数.常用的函数有sigmoid.双曲正切.线性修正单元函数等等. 使用一个神经网络时,需要决定使用哪种激活函数用隐藏层上,哪种用在输出节点上. 比如,在神经网路的前向传播中,这两步会使用到sigmoid函数.sigmoid函数在这里被称为激活函数. sigmoid函数 之前在线性回归中,我们用过这个函数,使我…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
CNN学习笔记:批标准化 Batch Normalization Batch Normalization, 批标准化, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在神经网络的训练过程中,随着网络深度的增加,后面每一层的输入值(即x=WU+B,U是输入)逐渐发生偏移和变动,之所以训练收敛慢,一般是整体分布往非线性函数的取值区间的上下限两端靠近,所以这将导致反向传播时低层网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因,而BN就是通过一定的规范手动,把每层神经网络任意神…
CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi∈{1,2,...,C},另h=(h1,h2,...,hC)⊤为网络的最终输出,即样本i的预测结果,其中C为分类任务类别数. 交叉熵损失函数 交叉熵损失函数又称为Softmax损失函数,是目前卷积神经网络中最常用的分类…
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作和非线性激活函数的映射等一系列操作的层层堆叠,将高层语义信息逐层由原始信息中抽取出来,逐层抽象. 将信息逐渐抽象出来的过程称为前馈运算(Feed-Forward).通过计算预测值与真实值之间的误差和损失,凭借反向传播算法(Back-Propagation algorithm)将误差或损失由最后一层逐…
CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样本的标记空间的作用. 一段来自知乎的通俗理解: 从卷积网络谈起,卷积网络在形式上有一点点像咱们正在召开的“人民代表大会”.卷积核的个数相当于候选人,图像中不同的特征会激活不同的“候选人”(卷积核).池化层(仅指最大池化)起着类似于“合票”的作用,不同特征在对不同的“候选人”有着各自的喜好. 全连接相…
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的.它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值.直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要.池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合.通常来说,CNN的卷积层之间都…
CNN学习笔记:卷积运算 边缘检测 卷积 卷积是一种有效提取图片特征的方法.一般用一个正方形卷积核,遍历图片上的每一个像素点.图片与卷积核重合区域内相对应的每一个像素值乘卷积核 .内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值. 卷积操作的作用 卷积是一种局部操作,通过一定大小的卷积核作用于局部图像区域获得图像的局部信息. 我们现在使用三种边缘卷积核(亦称滤波器),整体边缘滤波器.横向边缘滤波器和纵向边缘滤波器. 试想,若原图像素(x, y)处可能存在物体边缘,则其四周…
CNN学习笔记:梯度下降法 梯度下降法 梯度下降法用于找到使损失函数尽可能小的w和b,如下图所示,J(w,b)损失函数是一个在水平轴w和b上面的曲面,曲面的高度表示了损失函数在某一个点的值…