1. 摘要 BN 是一个广泛应用的用于快速稳定地训练深度神经网络的技术,但是我们对其有效性的真正原因仍然所知甚少. 输入分布的稳定性和 BN 的成功之间关系很小,BN 对训练过程更根本的影响是:它让优化更加平滑.这种平滑让梯度更加可预测更加稳定,从而加速训练. 2. BN 和 internal covariate shift 在原始论文 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Cov…
目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Normalization的作用 几个问题 卷积层如何使用BatchNorm? 没有scale and shift过程可不可以? BN层放在ReLU前面还是后面? BN层为什么有效? 参考 博客:blog.shinelee.me | 博客园 | CSDN 动机 在博文<为什么要做特征归一化/标准化? 博客园…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…
目录 1. PROBLEM 1.1. Introduction 1.2. Analysis 2. SOLUTION 2.1. Batch Normalization 及其问题 2.2. 梯度修正及其问题 2.3. Key Algorithm 2.4. Inference 2.5. 实际应用方式 3. EFFECT 论文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Sh…
转自:参数优化方法 1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) - 权重初始化(Weight Initialization) - 正则化(Regularization:避免过拟合的一种技术) - 梯度检查(Gradient checking) 2)动态训练(Training dynamics)          - 跟踪学习过程 (Baby…
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni…
Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>论文中提出此方法来减缓网络参数初始化的难处. Batch Norm优点 减轻过拟合 改善梯度传播(权重不会过高或过低) 容许较高的学习率,能够提高训练速度. 减轻对初始化权重的强依赖 作为一种正则化的方式,在某种程度上减少对d…
一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要使用使用局部响应归一化层,BN本身就是一个归一化网络层 4.可以把训练数据彻底打乱 神经网络训练开始前,都要对输入数据做一个归一化处理,原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批训练数据的分布各不相同(bat…
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变我们就需要使用更小的learning rate去训练,这一现象被成为internal covariate shift,Batch Normalization能够很好的解决这一问题.目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于: 可以选择一…
BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网络模型更加容易和稳定.所以目前BN已经成为几乎所有卷积神经网络的标配技巧了. 从字面意思看来Batch Normalization(简称BN)就是对每一批数据进行归一化,确实如此,对于训练中某一个batch的数据{x1,x2,...,xn},注意这个数据是可以输入也可以是网络中间的某一层输出.在BN出现之前,…