SSE,MSE,RMSE,R-square 指标讲解】的更多相关文章

SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination 下面我对以上几个名词进行详细的解释下,相…
SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination 下面我对以上几个名词进行详细的解释下,…
转载自:http://blog.csdn.net/l18930738887/article/details/50629409 SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-fre…
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然,其衡量标准可以是 但问题是,这个衡量标准和m相关. (当10000个样本误差累积是100,而1000个样本误差累积却达到了80,虽然80<100,但我们却不能说第二个模型优于第一个) 改进==> 对式子除以m,使得其与测试样本m无关  ->  但又有一个问题,之前算这个公式时为了保证其每项为…
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后使用测试数据集进行测试然后和测试数据集自带的真实的标签进行对比,那么这样一来,我们就得到了我们的分类准确度,使用这种分类准确度来衡量机器学习模型的好坏 那么对于线性回归算法的好坏应该用什么来衡量呢 以简单线性回归算法来说,我们就是为了使损失函数尽可能的小,那么我们在使用的时候,实际上也是分成两部分的…
TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) ---  由误差导致的真实值和估计值之间的偏差平方和(Sum Of Squares Due To Error) ESS: Explained Sum of Squares (回归平方和) ---  被模型解释的方差(Sum Of Squares Due To Regression) TSS=RSS+ESS R2: Coefficien…
MSE: Mean Squared Error 均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度. RMSE 均方误差:均方根误差是均方误差的算术平方根…
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE.R-Squared. MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候:MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE: RMSLE: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再求RMSE,这个过程就是RMSLE.对低估值(under-p…
原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如下: M A E ( y , y ^ ) = 1 n ( ∑ i = 1 n ∣ y − y ^ ∣ ) MAE(y,\hat{y}) = \frac{1}{n}(\sum_{i = 1}^{n}\left | y - \hat{y} \right |) MAE(y,y^​)=n1​(i=1∑n​∣…
前言 一般来说,Web端即时通讯技术因受限于浏览器的设计限制,一直以来实现起来并不容易,主流的Web端即时通讯方案大致有4种:传统Ajax短轮询.Comet技术.WebSocket技术.SSE(Server-sent Events).关于这4种技术方式的优缺点,请参考<Web端即时通讯技术盘点:短轮询.Comet.Websocket.SSE>.本文将专门讲解SSE技术. 服务器推送事件(Server-sent Events),简称SSE,是 HTML 5 规范中的一个组成部分,可以用来从服务端…
分析人:BUPT_LX 研究目的 用某些算法对2014年12月份的16家国内A股上市的商业银行当中11项財务数据(资产总计.负债合计.股本.营业收入.流通股A.少数股东权益.净利润.经营活动的现金流量净额.投资活动的现金流量净额.筹资活动的现金流量净额.汇率变动对现金的影响)提取分析,得出股票价格的財务影响原因.更加清楚地指导银行股价与財务数据指标之间的联系. 研究方法 主要有描写叙述性分析.因子分析.回归法 方法概述: 1. 先对上述的財务数据进行提取.然后用常规的描写叙述方法(平均.最大.最…
本文原链接:https://cloud.tencent.com/developer/article/1194063 SSE技术详解:一种全新的HTML5服务器推送事件技术 前言 概述 基本介绍 与WebSocket的比较 SSE(Server-sent Events)在HTML 5中的技术规范和定义 SSE实战示例:服务器端和浏览器端实现 IE上的兼容性问题 结束语 参考资料 前言 一般来说,Web端即时通讯技术因受限于浏览器的设计限制,一直以来实现起来并不容易,主流的Web端即时通讯方案大致有…
12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相关性的置换检验. logregperm包提供了Logistic回归的置换检验.另外一个非常重要的包是glmperm,它涵盖了广义线性模型的置换检验依靠基础的抽样分布理论知识,置换检验提供了另外一个十分强大的可选检验思路.对于上面描述的每一种置换检验,我们完全可以在做统计假设检验时不理会正态分布.t分…
预测模型在各个领域都越来越火,今天的分享和之前的临床预测模型背景上有些不同,但方法思路上都是一样的,多了解各个领域的方法应用,视野才不会被局限. 今天试图再用一个实例给到大家一个统一的预测模型的做法框架(R中同样的操作可以有多种多样的实现方法,框架统一尤其重要,不是简单的我做出来就行).而是要: eliminate syntactical differences between many of the functions for building and predicting models 数据…
在折腾完爬虫还有一些感兴趣的内容后,我最近在看用R语言进行简单机器学习的知识,主要参考了<机器学习-实用案例解析>这本书. 这本书是目前市面少有的,纯粹以R语言为基础讲解的机器学习知识,书中涉及11个案例.分12章.作者备注以及代码部分都讲得比较深.不过或许因为出书较早,在数据处理方面,他使用更多的是plyr包,而我用下来,dplyr包效果更好.所以许多涉及数据处理的代码,其实可以用更简洁的方法重写.但是思路却是实打实的精华. 我之前在某长途动车上啃完了前三章,两个案例.但越往后读,越觉得后面…
1,F1=2*(准确率*召回率)/(准确率+召回率) F1的值是精准率与召回率的调和平均数.F1的取值范围从0到1的数量越大,表明实现越理想. Precision(精准率)=TP/(TP+FP) Recall(召回率)= TP/(TP+FN) 2,均方误差(MSE,Mean Square error) 是回归精度的常用评价指标 MSE = 1/n * sum(yi-f(xi))2    其中,yi为实际值,f(xi) 为y的预测值,n为观测值数量.…
Functionals “To become significantly more reliable, code must become more transparent. In particular, nested conditions and loops must be viewed with great suspicion. Complicated control flows confuse programmers. Messy code often hides bugs.” — Bjar…
参考博客: http://blog.sina.com.cn/s/blog_8f5b2a2e0101fmiq.html https://blog.csdn.net/huangyouyu523/article/details/78565159 fm = lm(y~x) #线性回归模型 info = summary(fm) #提取模型资料 info$coeff #提取回归系数 info$r.square #提取判定系数R方 info$adj.r.square #提取调整判定系数R方 info$fsta…
#-------------------------------------------------------------------------# # R in Action (2nd ed): Chapter 12 # # Resampling statistics and bootstrapping # # requires packages coin, multcomp, vcd, MASS, lmPerm, boot # # install.packages(c("coin"…
仿照上篇博文对于混淆矩阵.ROC和AUC指标的探讨,本文简要讨论机器学习二分类问题中的混淆矩阵.PR以及AP评估指标:实际上,(ROC,AUC)与(PR,AP)指标对具有某种相似性. 按照循序渐进的原则,依次讨论混淆矩阵.PR和AP: 设定一个机器学习问题情境:给定一些肿瘤患者样本,构建一个分类模型来预测肿瘤是良性还是恶性,显然这是一个二分类问题. 本文中,将良性肿瘤视为正类标签(可能在具体实践中更为关注恶性肿瘤,不过这并不影响技术上的操作). 当分类模型选定以后,将其在测试数据集上进行评估,分…
R 语言实战(第二版) part 3 中级方法 -------------第8章 回归------------------ #概念:用一个或多个自变量(预测变量)来预测因变量(响应变量)的方法 #最常用:OLS--普通最小二乘回归法,包括简单线性回归.多项式回归.多元线性回归 #过程:拟合OLS回归模型-->评价拟合优度-->假设检验-->选择模型 #OLS回归 #目标:减少因变量的真实值和预测值的差值来获得模型参数(截距和斜率),即使得残差平方和最小 #数据需满足:正态性.独立性.线性…
来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882 来自:https://blog.csdn.net/u010705209/article/details/53037481 在分类模型中,roc曲线和auc曲线作为衡量一个模型拟合程度的指标. 分类模型评估:  指标  描述  Scikit-learn函数  Precision  AUC  from sklearn.metrics import precision_sc…
Python3入门机器学习经典算法与应用 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 使用新版python3语言和流行的scikit-learn框架,算法与编程两翼齐飞,由浅入深,一步步的进入机器学习的世界 学习机器学习相关技术的最好方式就是先自己设计和完成一些小项目,学到的不只是一门课程,更是不断思考的能力 第1章 欢迎来到 Python3 玩转机器学习 欢迎大家来到<Python3玩转机器学习>的课堂.在这个课程中,我们将从0开始,一点一点进入机…
分类模型评估: 指标 描述 Scikit-learn函数 Precision 精准度 from sklearn.metrics import precision_score Recall 召回率 from sklearn.metrics import recall_score F1 F1值 from sklearn.metrics import f1_score Confusion Matrix 混淆矩阵 from sklearn.metrics import confusion_matrix…
数学建模概述 监督学习-回归分析(线性回归) 监督学习-分类分析(KNN最邻近分类) 非监督学习-聚类(PCA主成分分析& K-means聚类) 随机算法-蒙特卡洛算法 1.回归分析 在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间互相依赖的定量关系的一种统计分析方法. 按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析. 2.线性回归的python实现 线性回归的python实现方法 线性回归通常是人们在学习预测模型时首选的技术之一…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2z, 大龙 ·2016-03-03 09:00 FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR…
转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, 大龙 ·2016-03-03 09:00 FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR预估…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
回归模型的性能的评价指标主要有:RMSE(平方根误差).MAE(平均绝对误差).MSE(平均平方误差).R2_score.但是当量纲不同时,RMSE.MAE.MSE难以衡量模型效果好坏.这就需要用到R2_score,实际使用时,会遇到许多问题,今天我们深度研究一下. 预备知识 搞清楚R2_score计算之前,我们还需要了解几个统计学概念. 若用$y_i$表示真实的观测值,用$\bar{y}$表示真实观测值的平均值,用$\hat{y_i}$表示预测值,则: 回归平方和:SSR $$SSR = \s…