C++索引从0开始的堆排序算法实现】的更多相关文章

更新2019年11月4日 04:26:35 睡不着觉起来寻思寻思干点啥吧,好像好久没写堆排了.于是写了个索引从0开始的堆排,这次把建堆函数略了并在heapsort主函数里,索引从0开始到size-1结束,长度size. 这个堆排和索引从1开始的堆排区别就是对于节点i,两个子节点分别为2i+1和2i+2.另外建堆时从索引size/2-1开始倒序维护大顶堆.下面证明下这个起始索引的节点一定对应着二叉树的最后的一个或两个叶子节点. 1.siz是偶数,那么最后一个内部节点只有左子树.siz/2-1乘2等…
堆排序算法 java 实现 白话经典算法系列之七 堆与堆排序 Java排序算法(三):堆排序 算法概念 堆排序(HeapSort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法,辅助空间为O(1), 最坏时间复杂度为O(nlog2n) ,堆排序的堆序的平均性能较接近于最坏性能. 算法思想 建立最小堆: 取出堆顶元素,顺序放到待排序数组中:将堆底元素放到堆顶,并重新调整堆: 重复步骤 2 ,直至堆中所有元素全部取完: 参考的…
一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]…
一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]…
1. heapq堆排序算法 堆(heap)是一个树形数据结构,其中子节点与父节点有一种有序关系.二叉堆(binary heap)可以使用一个有组织的列表或数组表示,其中元素N的子元素位于2*N+1和2*N+2(索引从0开始).这种布局允许原地重新组织堆,从而不必再添加或删除元素时重新分配大量内存. 最大堆(max-heap)确保父节点大于或等于其两个子节点.最小堆(min-heap)要求父节点小于或等于其子节点.Python的heapq模块实现了一个最小堆. 1.1 创建堆 创建堆有两种基本方式…
Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择对这个算法进行分析主要是因为它用到了一个非常有意思的算法技巧:数据结构 - 堆.而且堆排其实是一个看起来复杂其实并不复杂的排序算法,个人认为heapsort在机器学习中也有重要作用.这里重新详解下关于Heapsort的方方面面,也是为了自己巩固一下这方面知识,有可能和其他的文章有不同的入手点,如有错…
本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下Star哈 文章首发于我的个人博客: www.how2playlife.com 本文是微信公众号[Java技术江湖]的<重新学习MySQL数据库>其中一篇,本文部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有…
如果使用FlipView时,出现别的页面切换到含有FlipView的页面时(缓存此页面/MainPage),点击或者滑动FlipView,Flipview自动索引到0 的问题解决办法 1.对Flipview的进行数据绑定 2.把FlipView的数据源加载放在OnNavigatedTo方法中…
在软件设计相关领域,“堆(Heap)”的概念主要涉及到两个方面: 一种是数据结构,逻辑上是一颗完全二叉树,存储上是一个数组对象(二叉堆). 另一种是垃圾收集存储区,是软件系统可以编程的内存区域. 本文所说的堆指的是前者,另外,这篇文章中堆中元素的值均以整形为例 堆排序的时间复杂度是O(nlog2n),与快速排序达到相同的时间复杂度. 但是在实际应用中,我们往往采用快速排序而不是堆排序. 这是因为快速排序的一个好的实现,往往比堆排序具有更好的表现. 堆排序的主要用途,是在形成和处理优先级队列方面.…
摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章主要内容分为三个部分. 第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础. 第二部分结合MySQL数据库中My…