[题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i}\sum_{j=0}^{k_i}{m_i \choose j}{n_i-m_i\choose k_i- j}j^L \] 实际上$S $很小,所以本质上就是求 \[ \sum_{j=0}^{k_i}{m_i \choose j}{n_i-m_i\choose k_i- j}j^L \] 为了方便我…
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k \le 9\) 几乎一下午和一晚上杠这道题...中间各种翻<具体数学>各种卡常 有两种做法,这里只说我认为简单的一种. 题目就是要求 \[ \sum_{i=0}^a \sum_{j=0}^b [i>j] \binom{a}{i} \binom{b}{j} \] 化一化得到 \[ \sum_{…
洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_{n-m}^{k-i}i^L\) 这个\(i^L\)很烦,就把第二类斯特林数的式子套进去 \(\sum_{i=0}^kC_m^iC_{n-m}^{k-i}i^L\) \(\sum_{i=0}^kC_m^iC_{n-m}^{k-i}\sum_{j=0}^iC_{i}^j\begin{Bmatrix}L…
题面传送门 首先写出式子: \[ans=\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{n-m}{k-i}·i^L \] 看到后面有个幂,我们看它不爽,因此考虑将其拆开,具体来说,根据普通幂转下降幂的式子: \[i^L=\sum\limits_{j=1}^L\begin{Bmatrix}L\\j\end{Bmatrix}\dbinom{i}{j}·j! \] 我们可以得到 \[ans=\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{…
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 "(",以及右边有 $y$ 个 ")",那么就有式子如下: ① 若 $x+1 \le y$:$C_{x}^{0} C_{y}^{1} + C_{x}^{1} C_{y}^{2} + \cdots + C_{x}^{x} C_{y}^{x+1} = \sum_{i=0}…
题目链接:洛谷 我一开始不知道$N,M$有什么用处,懵逼了一会儿,结果才发现是输入数据范围... $$\begin{aligned}\binom{n}{k}Ans&=\sum_{i=0}^k\binom{m}{i}\binom{n-m}{k-i}i^L \\&=\sum_{i=0}^k\binom{m}{i}\binom{n-m}{k-i}\sum_{j=0}^Lj!\binom{i}{j}\begin{Bmatrix}L \\ j\end{Bmatrix} \\&=\sum_{j…
[洛谷2791]幼儿园篮球题(第二类斯特林数,NTT) 题面 洛谷 题解 对于每一组询问,要求的东西本质上就是: \[\sum_{i=0}^{k}{m\choose i}{n-m\choose k-i}i^L\] 如果没有后面那个部分,就是一个范德蒙恒等式,所以就要把这个\(i^L\)直接拆掉. 然后直接拿第二类斯特林数来拆: \[i^L=\sum_{j=0}^L\begin{Bmatrix}L\\j\end{Bmatrix}{i\choose j}j!\] 于是就把答案拆成了: \[\begi…
浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看过一点线性代数的应该都知道范德蒙德行列式. \[V(x_0,x_1,\cdots ,x_{n-1})=\begin{bmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{…
求 \(\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}i^L\) \((1\leqslant n,m\leqslant 2\times 10^7,1\leqslant L\leqslant 2\times 10^5)\) 这个式子比较简洁,然后也没啥可推的,所以我们将 \(i^L\) 展开. 那么原式为 \(\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}\sum_{j=0}^{i}\binom{i}{j}S(L,j)\t…
传送门 先看我们要求的是什么,要求的期望就是总权值/总方案,总权值可以枚举进球的个数\(i\),然后就应该是\(\sum_{i=0}^{k} \binom{m}{i}\binom{n-m}{k-i}i^l\),总方案是\(\binom{n}{k}\) 直接做显然不行,然后式子里有个\(i^l\),把它拆开,也就是\(\sum_{j=0}^{l} \binom{i}{j}S_{l,j}j!\),代入原式\[\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}\sum…