文章链接: https://quinonero.net/Publications/predicting-clicks-facebook.pdf abstract Facebook日活跃度7.5亿,活跃广告主1百万 特征工程最重要:user和ad的历史信息胜过其他特征 轻微提升模型效果:数据新鲜度.学习率.数据采样 增加一个重要特征和选择正确的模型更关键 introduction 按点击收费广告效果依赖于点击率预估.相比于搜索广告使用搜索query,Facebook更依赖人口和兴趣特征. 本文发现…
ABSTRACT 这篇paper中作者结合GBDT和LR,取得了很好的效果,比单个模型的效果高出3%.随后作者研究了对整体预测系统产生影响的几个因素,发现Feature+Model的贡献程度最大,而其他因素的影响则较小. 1. INTRODUCTION 介绍了先前的一些相关paper.包括Google,Yahoo,MS的关于CTR Model方面的paper. 而在Facebook,广告系统是由级联型的分类器(a cascade of classifiers)组成,而本篇paper讨论的CTR…
ABSTRACT 这篇paper中作者结合GBDT和LR,取得了很好的效果,比单个模型的效果高出3%.随后作者研究了对整体预测系统产生影响的几个因素,发现Feature(能挖掘出用户和广告的历史信息)+Model(GBDT+LR)的贡献程度最大,而其他因素(数据实时性,模型学习速率,数据采样)的影响则较小. 1. INTRODUCTION 介绍了先前的一些相关paper.包括Google,Yahoo,MS的关于CTR Model方面的paper. 而在Facebook,广告系统是由级联型的分类器…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
利用GBDT模型构造新特征具体方法 数据挖掘入门与实战  公众号: datadw   实际问题中,可直接用于机器学**模型的特征往往并不多.能否从"混乱"的原始log中挖掘到有用的特征,将会决定机器学**模型效果的好坏.引用下面一句流行的话: 特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已. 本文中我将介绍Facebook最近发表的利用GBDT模型构造新特征的方法. (Xinran He et al. Practical Lessons from Predict…
原作:面包包包包包包 改动:寒小阳 && 龙心尘 时间:2016年2月 出处:http://blog.csdn.net/Breada/article/details/50697030 http://blog.csdn.net/han_xiaoyang/article/details/50697074 http://blog.csdn.net/longxinchen_ml/article/details/50697105 声明:版权全部.转载请联系作者并注明出处 1. 引言 提笔写这篇博客,…
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouTube视频推荐的DNN算法,文中不但详细介绍了Youtube推荐算法和架构细节,还给了不少practical lessons and insights,很值得精读一番.下图便是YouTube APP视频推荐的一个例子. 在推荐系统领域,特别是YouTube的所在视频推荐领域,主要面临三个挑战: 规模…
1. 背景 1.1 Gradient Boosting Gradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向.损失函数是评价模型性能(一般为拟合程度+正则项),认为损失函数越小,性能越好.而让损失函数持续下降,就能使得模型不断改性提升性能,其最好的方法就是使损失函数沿着梯度方向下降(讲道理梯度方向上下降最快). Gradient Boost是一个框架,里面可以套入很多不同的算法. 1.2 Gradient Boost…
http://www-personal.umich.edu/~jizhu/jizhu/wuke/Friedman-AoS01.pdf https://www.cnblogs.com/bentuwuying/p/6667267.html https://www.cnblogs.com/ModifyRong/p/7744987.html https://www.cnblogs.com/bentuwuying/p/6264004.html 1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真…
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏.购买等.本文以点击率(CTR)预估为例,介绍常用的CTR预估模型,试图找出它们之间的关联和演化规律. 数据特点 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特…