如何停止你的Streaming Application】的更多相关文章

Spark 1.3及其前的版本 你的一个 spark streaming application 已经好好运行了一段时间了,这个时候你因为某种原因要停止它.你应该怎么做?直接暴力 kill 该 application 吗?这可能会导致数据丢失,因为 receivers 可能已经接受到了数据,但该数据还未被处理,当你强行停止该 application,driver 就没办法处理这些本该处理的数据. 所以,我们应该使用一种避免数据丢失的方式,官方建议调用StreamingContext#stop(s…
Accumulators and Broadcast Variables 这些不能从checkpoint重新恢复 如果想启动检查点的时候使用这两个变量,就需要创建这写变量的懒惰的singleton实例. 下面是一个例子: def getWordBlacklist(sparkContext): if ('wordBlacklist' not in globals()): globals()['wordBlacklist'] = sparkContext.broadcast(["a", &…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
1.基本概念(了解) ①流(Streaming): 是一种数据传送技术,它把客户机收到的数据变成一个稳定连续的流,源源不断地送出,使用户听到的声音或看到的图象十分平稳, 而且用户在整个文件送完之前就可以开始在屏幕上浏览文件. ②常见的流式计算框架 Apache Storm Spark Streaming Apache Flink 上述三种实时计算系统都是开源的分布式系统,具有低延迟.可扩展和容错性诸多优点,它们的共同特色在于: 允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并…
Spark Streaming核心概念与编程 1. 核心概念 StreamingContext Create StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) //Second(1) #表示处理的批次, 当前1秒处理一次 val ssc = new Stream…
一.基础核心概念 1.StreamingContext详解 (一) 有两种创建StreamingContext的方式:             val conf = new SparkConf().setAppName(appName).setMaster(master);             val ssc = new StreamingContext(conf, Seconds(1)); StreamingContext, 还可以使用已有的SparkContext来创建         …
执行流程 数据的接收 StreamingContext实例化的时候,需要传入一个SparkContext,然后指定要连接的spark matser url,即连接一个spark engine,用于获得executor. 实例化之后,首先,要指定一个接收数据的方式,如 val lines = ssc.socketTextStream("localhost", 9999) 1 这样从socket接收文本数据.这个步骤返回的是一个ReceiverInputDStream的实现,内含Recei…
预览 Spark Streaming是Spark核心API的扩展,支持高扩展,高吞吐量,实时数据流的容错流处理.数据可以从Kafka,Flume或TCP socket等许多来源获取,并且可以使用复杂的算法进行处理(比如map,reduce,join,window等高级函数).最终,处理的结果数据可以推送到文件系统,数据库或实时仪表盘上.           在内部,它的工作原理如下图.Spark Streaming接收实时输入数据流并将数据分成批,然后由Spark引擎处理,进而批量生成最终结果流…
5.1 DStreamGraph对象分析 在Spark Streaming中,DStreamGraph是一个非常重要的组件,主要用来: 1. 通过成员inputStreams持有Spark Streaming输入源及接收数据的方式 2. 通过成员outputStreams持有Streaming app的output操作,并记录DStream依赖关系 3. 生成每个batch对应的jobs 下面,通过分析一个简单的例子,结合源码分析来说明DStreamGraph是如何发挥作用的.案例如下: val…
4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) // 可以通过 ssc.sparkContext 来访问 SparkContext // 或者通过已…
一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.fu…
在学习spark streaming时,建议先学习和掌握RDD.spark streaming无非是针对流式数据处理这个场景,在RDD基础上做了一层封装,简化流式数据处理过程. spark streaming 引入一些新的概念和方法,本文将介绍这方面的知识.主要包括以下几点: 初始化流上下文 Discretized Streams离散数据流 Input DStreams and Receivers Transformations on DStreams Output Operations on…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
目录 目录 概况 原理 API DStream WordCount示例 Input DStream Transformation Operation Output Operation 缓存与持久化 Checkpoint 性能调优 降低批次处理时间 设置合理批次时间间隔 内存调优 概况 Spark Streaming支持实时数据流的可扩展(scalable).高吞吐(high-throughput).容错(fault-tolerant)的流处理(stream processing). 架构图 特性…
Erlang application stop 调用死锁(金庆的专栏)在application行为模块的start()中启动bson应用,在stop()中停止bson,结果application:stop(bson)会死锁.-module(my_app).-behaviour(application).%% Application callbacks-export([start/2, stop/1]).%% ============================================…
Use the following steps to run a Spark Streaming job on a Kerberos-enabled cluster. Select or create a user account to be used as principal. This should not be the kafka or spark service account. Generate a keytab for the user. Create a Java Authenti…
could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make more efficient by a huge factor if I could use the stateful processing guarantees available in Flink so I set out to build a prototype to do exactly th…
An ingest pattern that we commonly see being adopted at Cloudera customers is Apache Spark Streaming applications which read data from Kafka. Streaming data continuously from Kafka has many benefits such as having the capability to gather insights fa…
Explore the configuration changes that Cigna’s Big Data Analytics team has made to optimize the performance of its real-time architecture. Real-time stream processing with Apache Kafka as a backbone provides many benefits. For example, this architect…
1.Spark Streaming是什么? a.Spark Streaming是什么? Spark Streaming类似于Apache Storm,用于流式数据的处理.根据其官方文档介绍,Spark Streaming有高吞吐量和容错能力强等特点.Spark Streaming支持的数据输入源很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等.数据输入后可以用Spark的高度抽象原语如:map.reduce.join.window等进行运算.而结果也能保存…
Overview Flume:一个分布式的,可靠的,可用的服务,用于有效地收集.聚合.移动大规模日志数据 我们搭建一个flume + Spark Streaming的平台来从Flume获取数据,并处理它. 有两种方法实现:使用flume-style的push-based方法,或者使用自定义的sink来实现pull-based方法. Approach 1: Flume-style Push-based Approach flume被设计用来在Flume agents之间推信息,在这种方式下,Spa…
因springboot内嵌tomcat或jetty使得我们没法去操作服务: 因此,常常是服务起来后,要重启时会端口占用,我们只能无情的kill掉端口. 不过spring也设置有配置停止的请求: Application.properties中添加: endpoints.shutdown.enabled=true endpoints.shutdown.sensitive=false 在pom.xml中添加: <dependency> <groupId>org.springframewo…
参考,http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html Overview SparkStreaming支持多种流输入,like Kafka, Flume, Twitter, ZeroMQ or plain old TCP sockets,并且可以在上面进行transform操作,最终数据存入HDFS,数据库或dashboard另外可以把Spark's in-built machine le…
1 Overview Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Data can be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesis, or TCP…
原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)   上篇博客讨论了Spark Streaming 程序动态生成Job的过程,并留下一个疑问: JobScheduler将动态生成的Job提交,然后调用了Job对象的run方法,最后run方法的调用是如何触发RDD的Action操作,从而真正触发Job的执行的呢?本文就具体讲解这个问题.   一.DStream和RDD的关系     DSream 代表了一系列连续的RDD,DStream中每…
数据接入Spark Streaming的二种方式:Receiver和no receivers方式 建议企业级采用no receivers方式开发Spark Streaming应用程序,好处: 1.更优秀的自由度控制 2.语义一致性 no receivers更符合数据读取和数据操作,Spark 计算框架底层有数据来源,如果只有direct直接操作数据来源则更天然.操作数据来源封装其一定是rdd级别的. 所以Spark 推出了自定义的rdd即Kafkardd,只是数据来源不同. 进入源码区: 注释基…
Spark Streaming容错 检查点机制-checkpoint 什么是检查点机制? Spark Streaming 周期性地把应用数据存储到诸如HDFS 或Amazon S3 这样的可靠存储系统中以供恢复时使用的机制叫做检查点机制 检查点机制的作用 控制发生失败时需要重算的状态数 Spark Streaming通过lineage重算,检查点机制则可以控制需要在lineage中回溯多远 提供驱动器程序容错 如果流计算应用中的驱动器程序崩溃了,你可以重启驱动器程序,并让驱动器程序从检查点恢复,…
一.StreamingContext源码分析 ###入口 org.apache.spark.streaming/StreamingContext.scala /** * 在创建和完成StreamContext的初始化之后,创建了DStreamGraph.JobScheduler等关联组件之后,就会调用StreamContext的socketTextStream等方法, * 来创建输入DStream,然后针对输入DStream执行一系列的transformation转换操作,最后,会执行一个out…
输入DStream代表了来自数据源的输入数据流.在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream), 代表了从netcat(nc)服务接收到的数据流.除了文件数据流之外,所有的输入DStream都会绑定一个Receiver对象,该对象是一个关键的组件, 用来从数据源接收数据,并将其存储在Spark的内存中,以供后续处理. Spark Streaming提供了两种内置的数据源支持: 1.基础数据源:StreamingConte…