[转]从头开始 GAN】的更多相关文章

1 前言 GAN的火爆想必大家都很清楚了,各种GAN像雨后春笋一样冒出来,大家也都可以名正言顺的说脏话了[微笑脸].虽然目前GAN的酷炫应用还集中在图像生成上,但是GAN也已经拓展到NLP,Robot Learning上了.与此同时,在与NLP的结合过程中,我们很惊讶的发现,GAN和增强学习的Actor-Critic有曲艺同工之妙呀!Deepmind 的大神Oriol Vinyals也特地写了篇文章Connecting Generative Adversarial Networks and Ac…
作者在进行GAN学习中遇到的问题汇总到下方,并进行解读讲解,下面提到的题目是李宏毅老师机器学习课程的作业6(GAN) 一.GAN 网络上有关GAN和DCGAN的讲解已经很多,在这里不再加以赘述,放几个我认为比较好的讲解 1.GAN概念理解 2.理解GAN网络基本原理 3.李宏毅机器学习课程 4.换个角度看GAN:另一种损失函数 二.DCGAN 1.从头开始GAN[论文](二) -- DCGAN 2.PyTorch教程之DCGAN 3.pytorch官方DCGAN样例讲解 三.示例代码解读 3.1…
生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://a…
在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文<Wasserstein GAN>却在Reddit的Machine Learning频道火了,连Goodfellow都在帖子里和大家热烈讨论,这篇论文究竟有什么了不得的地方呢? 要知道自从2014年Ian Goodfellow提出以来,GAN就存在着训练困难.生成器和判别器的loss无法指示训练进程.生成样本缺乏多样性等问题.从那时起,很多论文都在尝试解决,但是效果不尽人意,比如最有名的一个改进DCGAN依靠的是对判…
转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) 一.GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛…
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不定导致模型失败,WGAN,找到了更为合适的Loss函数,使得梯度呈线性,事实上WGAN对判别器权重进行了区间限制,使得权重控制在一定范围内,使得梯度更大概率的呈线性增长. WGAN特点 无需平衡D,G的训练组合 解决collapse model(模型崩溃)问题,保证样本多样性 结构更改简单有效 改进…
来源:https://www.leiphone.com/news/201701/yZvIqK8VbxoYejLl.html?viewType=weixin 导语:本文介绍下GAN和DCGAN的原理,以及如何使用Tensorflow做一个简单的生成图片的demo. 雷锋网注:本文作者何之源,复旦大学计算机科学硕士在读,研究人工智能计算机视觉方向.本文由雷锋网(公众号:雷锋网)编辑整理自作者知乎专栏,获授权发布. 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,…
Jittor实现Conditional GAN Generative Adversarial Nets(GAN)提出了一种新的方法来训练生成模型.然而,GAN对于要生成的图片缺少控制.Conditional GAN(CGAN)通过添加显式的条件或标签,来控制生成的图像.本文讲解了CGAN的网络结构.损失函数设计.使用CGAN生成一串数字.从头训练CGAN.以及在mnist手写数字数据集上的训练结果. CGAN网络架构 通过在生成器generator和判别器discriminator中添加相同的额…
GAN简介 一.什么是GAN GAN是一类由两个同时训练的模型组成的机器学习技术:一个是生成器,训练其生成伪数据:另一个是鉴别器,训练其从真实数据中识别伪数据. 生成(generative)一词预示着模型的总目标--生成新数据.GAN通过学习生成的数据取决于所选择的训练集,例如,如果我们想用GAN合成一幅看起来像达・芬奇作品的画作,就得用达·芬奇的作品作为训练集. 对抗(adversarial)一词则是指构成GAN框架的两个动态博弈.竞争的模型:生成器和判别器.生成器的目标是生成与训练集中的真实…
渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGAN)--一种能够生成全高清的具有照片级真实感图像的前沿技术.这项技术在顶级机器学习会议ICLR2018上提出时引起了轰动,以至于谷歌立即将其整合为 TensorFlow Hub中的几个模型之一.这项技术被深度学习的鼻祖之一 Yoshua Bengio称赞为"好得令人难以置信",在其发布后,…