(CS229)监督学习应用和梯度下降】的更多相关文章

监督学习:基于标记数据的学习 监督学习又举了两个例子:回归问题regression在连续数据上的模型构建问题  和 分类问题 classification 在离散数据上的问题 无监督学习:未标记的学习 经典方法是聚类cluster 应用:使用聚类算法对图像进行处理,聚类处理,使图像更为明显像素分组: 使用聚类算法将图像分成不同的部分 计算机集群组织 消费人群的划分 星系的组成 鸡尾酒会问题: 多人说话的情况下 那个人的声音从声音中分离出来 可使用无监督学习的方法 强化学习: 利用监督学习进行预测…
本课内容: 1.线性回归 2.梯度下降 3.正规方程组   监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案   1.线性回归 问题引入:假设有一房屋销售的数据如下: 引入通用符号: m =训练样本数 x =输入变量(特征) y =输出变量(目标变量) (x,y)—一个样本 ith—第i个训练样本=(x(i),y(i)) 本例中:m:数据个数,x:房屋大小,y:价格   监督学习过程: 1) 将训练样本提供给学习算法 2) 算法生成一个输出函数(一般用h表示,成为假…
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0 下面是θ1的取值与对应的J(θ1)变化情况 由此可见,最优解即为0,现在来看通过梯度下降法来自动找到最优解,对于上述待优化问题,下图给出其三维图像,可见要找到最优解,就…
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个例子,比如,想用面积和卧室个数来预测房屋的价格 训练集如下 首先,我们假设为线性模型,那么hypotheses定义为 , 其中x1,x2表示面积和#bedrooms两个feature 那么对于线性模型,更为通用的写法为 其中把θ和X看成向量,并且x0=1,就可以表示成最后那种,两个向量相乘的形式 那…
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度.比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y).对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂…
一.总述 线性回归算法属于监督学习的一种,主要用于模型为连续函数的数值预测. 过程总得来说就是初步建模后,通过训练集合确定模型参数,得到最终预测函数,此时输入自变量即可得到预测值. 二.基本过程 1.初步建模.确定假设函数h(x)(最终预测用) 2.建立价值函数J(θ)(也叫目标函数.损失函数等,求参数θ用) 3.求参数θ.对价值函数求偏导(即梯度),再使用梯度下降算法求出最终参数θ值 4.将参数θ值代入假设函数 三.约定符号 x:自变量,即特征值 y:因变量,即结果 h(x):假设函数 J(θ…
ng机器学习视频笔记(一) --线性回归.代价函数.梯度下降基础 (转载请附上本文链接--linhxx) 一.线性回归 线性回归是监督学习中的重要算法,其主要目的在于用一个函数表示一组数据,其中横轴是变量(假定一个结果只由一个变量影响),纵轴是结果. 线性回归得到的方程,称为假设函数(Hypothesis Function).当假设函数是线性函数时,其公式为: 二.代价函数 代价函数是用于评价线性回归,其公式为: 计算方式是计算每一个点在当前假设函数情况下,偏差的平方和,再取平均数.m即表示一共…
往期回顾 在上一篇文章中,我们已经学会了编写一个简单的感知器,并用它来实现一个线性分类器.你应该还记得用来训练感知器的『感知器规则』.然而,我们并没有关心这个规则是怎么得到的.本文通过介绍另外一种『感知器』,也就是『线性单元』,来说明关于机器学习一些基本的概念,比如模型.目标函数.优化算法等等.这些概念对于所有的机器学习算法来说都是通用的,掌握了这些概念,就掌握了机器学习的基本套路. 线性单元是什么? 感知器有一个问题,当面对的数据集不是线性可分的时候,『感知器规则』可能无法收敛,这意味着我们永…
批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时update的方式.常用于大规模训练集,当往往容易收敛到局部最优解. 详细参见:Andrew Ng 的Machine Learning的课件(见参考1) 可能存在的改进 1)样本可靠度,特征完备性的验证 例如可能存在一些outlier,这种outlier可能是测量误差,也有可能是未考虑样本特征,例如有一件衣服…
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度.比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y).对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂…
梯度,直观理解: 梯度: 运算的对像是纯量,运算出来的结果会是向量在一个标量场中, 梯度的计算结果会是"在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过微积分该知道甚么叫极限吧?)标量值最小处指向周围标量值最大处.而这个向量的大小会是上面所说的那个最小与最大的差距程度" 举例子来讲会比较简单,如果现在的纯量场用一座山来表示,纯量值越大的地方越高,反之则越低.经过梯度这个运操作数的运算以后,会在这座山的每一个点上都算出一个向量,这个向量会指向每个点最…
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更新,希望大家多多批评指正. Supervised Learning(监督学习) 在监督学习中,我们的数据集包括了算法的输出结果,比如具体的类别(分类问题)或数值(回归问题),输入和输出存在某种对应关系. 监督学习大致可分为回归(classification)和分类(regression). 回归:对…
一.TensorFlow为什么要存在变量收集的过程,主要目的就是把训练过程中的数据,比如loss.权重.偏置等数据通过图形展示的方式呈现在开发者的眼前. 自定义参数:自定义参数,主要是通过Python去执行,然后传入对应的参数.常见的有路径.训练次数等. 梯度下降:这个应该是最常见的训练手段了,在监督学习中,基本上都是采用这种方式,所以了解其中的使用过程还是很多必要的. 二.变量收集 tf.summary.scalar(<name>, <tensor>):通过标量的方式来统计数据(…
前言: FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA).FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度.理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k). 本篇博文先从解决优化问题的传统方法“梯度下降”开始,然后引入ISTA,最后再上升为FISTA.文章主要参考资料如下: [1] A Fas…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
在机器学习算法中,为了优化损失函数loss function ,我们往往采用梯度下降算法来进行优化.举个例子: 线性SVM的得分函数和损失函数分别为:                                       一般来说,我们是需要求损失函数的最小值,而损失函数是关于权值矩阵的函数.为了求解权值矩阵,我们一般采用数值求解的方法,但是为什么是梯度呢? 在CS231N课程中给出了解释,首先我们采用 策略1:随机搜寻(不太实用),也就是在一个范围内,任意选择W的值带入到损失函数中,那个…
for iter = 1:num_iters %梯度下降 用户向量 for i = 1:m %返回有0有1 是逻辑值 ratedIndex1 = R_training(i,:)~=0 ; %U(i,:) * V' 第i个用户分别对每个电影的评分 %sumVec1 第i个用户分别对每个电影的评分 减去真实值 sumVec1 = ratedIndex1 .* (U(i,:) * V' - R_training(i,:)); product1 = sumVec1 * V; derivative1 =…
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知识.下面是一些笔记概要. 一. 神经网络 神经网络我之前听过无数次,但是没有正儿八经研究过.形象一点来说,神经网络就是人们模仿生物神经元去搭建的一个系统.人们创建它也是为了能解决一些其他方法难以解决的问题. 对于单一的神经元而言,当生物刺激强度达到一定程度,其就会被激发,然后做出一系列的反应.模仿这…
问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S={x(i),y(i)},通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本(x(i),y(i))的损失函数,单个样本的损失表示如下: 引入L2正则,即在损失函数中引入,那么最终的损失为: 注意单个样本引入损失为(并不用除以m): 正则化的解释 这里的正则化项可以防止过拟合,注意是在整体的损失函数中引入正则项,一般的引入正则化的形式如下: 其中L(w)为整体损失,这里其实有: 这里的 C…
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0 下面是θ1的取值与对应的J(θ1)变化情况 由此可见,最优解即为0,现在来看通过梯度下降…
在多元线性回归中会用到梯度下降来计算参数值.这里我用python实现一个梯度下降版本. 这里多元线性方程为 y = A0+A1*x1+...+An* xn 数据输入格式,y表示 y \t x1 \t x2 \t .... xn 代码如下: import os import sys theta = [] training_data = [] h_value = [] alpha = 0.0000009 def load(path): f = open(path,'r') for x in f: x…
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在verycd可下载,可惜没有翻译.不过还是可以看.另外一个是prml-pattern recogni…
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Linear Regression),首先给出一个关于房屋的经典例子, 面积(feet2) 房间个数 价格(1000$) 2104 3 400 1600 3 330 2400 3 369 1416 2 232 3000 4 540 ... ... .. 上表中面积和房间个数是输入参数,价格是所要输出的解.面…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
回归(Regression) 在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等. 用一个很简单的例子来说明回归,这个例子来自很多的地方,比如说weka.大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积.房间的数量(几室几厅).地段.朝向等等,这些影响房屋价值的变量被称为特征(feature),fe…
一.梯度检测: 对于函数而言通常有两种计算梯度的方式: 1.数值梯度 (numberical gradient) 2.解析梯度 (analytic gradient ) 数值梯度计算通常为: 更为常见的是: h是一个很小的数,在实际当中通常为1e-5 假设数值梯度为ƒ’a 解析梯度为ƒ’n ,则数值梯度和解析梯度的误差relative error: relative error >1e-2 通常情况梯度是错误的 1e-4 < relative error < 1e-2 并不是很好 rel…
LMS算法,即为最小均方差,求的是误差的平方和最小. 利用梯度下降,所谓的梯度下降,本质上就是利用导数的性质来求极值点的位置,导数在这个的附近,一边是大于零,一边又是小于零的,如此而已... 而这个里,导数的正负性,是依靠误差的正负来决定的,懒得多说,大致如图:…
本周主要介绍了梯度下降算法运用到大数据时的优化方法. 一.内容概要 Gradient Descent with Large Datasets Stochastic Gradient Descent Mini-Batch Gradient Descent Stochastic Gradient Descent Convergence Advanced Topics Online Learning Map Reduce and Data Parallelism(映射化简和数据并行) 二.重点&难点…
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权…