Luogu T7468 I liked Matrix!】的更多相关文章

题目链接 题目背景 无 题目描述 在一个n*m 的矩阵A 的所有位置中随机填入0 或1,概率比为x : y.令B[i]=a[i][1]+a[i][2]+......+a[i][m],求min{B[i]}的期望,并将期望乘以(x + y)^nm 后对1e9+7取模. 输入输出格式 输入格式: 共一行包含四个整数n,m,x ,y. 输出格式: 共一行包含一个整数ans,表示期望乘以(x + y)^nm 后模1e9+7的值. 输入输出样例 输入样例#1: 2 2 1 1 输出样例#1: 10 说明 对…
引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要,有不同的计算方法. (1)在模k的意义下求出C(i,j)(1≤j≤i≤n)共n2 (数量级)个组合数: 运用一个数学上的组合恒等式(OI中称之为杨辉三角):C(m,n)=C(m-1,n-1)+C(m-1,n). 证明: 1.直接将组合数化为定义式暴力通分再合并.过程略. 2.运用组合数的含义:设m…
题目链接: https://www.luogu.org/problemnew/show/UVA11992 题目大意: 一个r*c的矩阵,一开始元素都是0,然后给你m次三种操作,分别是将一个子矩阵中所有元素加上v,将一个子矩阵元素全部修改成v,询问一个子矩阵中所有元素和,最大值和最小值. 思路: 应该说是一道有点毒瘤的数据结构题(然而时限居然给了5s)了,虽然它的主体只是线段树.我们可以把每一行都看作一棵线段树,这样操作就十分方便了. 然后就是修改值的操作,对于初学者可能有点棘手,但实际上并不难,…
CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenate (1 ..N)是将所有正整数 1, 2, -, N 顺序连接起来得到的数.例如,N = 13, Concatenate (1…
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. Input 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. Output 输出包含一行一个整数,即an除以m的余数. Sample Input…
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 请你求出 f(n) mod 1000000007 的值. Input 第 1 行:一个整数 n Output 第 1 行: f(n) mod 1000000007 的值 Sample Input 5 Sample Output 5 Http Luogu:htt…
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 Output 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 Sample Input 2 1 1 1 1 1 Sample Output 1 1 1 1 Http Luogu:https://www.luogu.org/prob…
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每天每个该细胞可以分裂出 x − 1 个新的细胞. 小 X 决定第 i 天向培养皿中加入 i 个细胞(在实验开始前培养皿中无细胞). 现在他想知道第 n 天培养皿中总共会有多少个细胞. 由于细胞总数可能很多,你只要告诉他总数对 w 取模的值即可. Input 第一行三个正整数 n, x,w Outpu…
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把DP转移方程写成矩阵乘法,然后用线段树(树上的话就是树剖)维护矩阵,这样就可以做到修改了. 注意这个"矩阵乘法"不一定是我们常见的那种乘法和加法组成的矩阵乘法.设\(A * B = C\),常见的那种矩阵乘法是这样的: \[C_{i, j} = \sum_{k = 1}^{n} A_{i,…
题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 题解 如题所示 , 是个模板题 ... 首先考虑静态 \(dp\) , 令 \(dp_{u,0/1}\) 为 \(u\) 不存在 / 存在 于最大权独立集的权值大小 . 然后转移很显然 , 一个点存在于独立集中时 , 儿子全都不能选 . 不存在时 , 儿子可选可不选 . 令 \(v\)…