Mapreduce实例--二次排序】的更多相关文章

前言部分: 在Map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现.本实验中使用的是TextInputFormat,他提供的RecordReder会将文本的字节偏移量作为key,这一行的文本作为value.这就是自定义Map的输入是<LongWritable, Text>的原因.然后调用自定义Map的map方法,将一个个<LongWritable…
每一条记录开始是进入到map函数进行处理,处理完了之后立马就入自定义分区函数中对其进行分区,当所有输入数据经过map函数和分区函数处理完之后,就调用自定义二次排序函数对其进行排序. MapReduce处理数据的大概简单流程:首先,MapReduce框架通过getSplit方法实现对原始文件的切片之后,每一个切片对应着一个map task,inputSplit输入到Map函数进行处理,中间结果经过环形缓冲区的 排序,然后分区.自定义二次排序(如果有的话)和合并,再通过shuffle操作将数据传输到…
附录之前总结的一个例子: http://www.cnblogs.com/DreamDrive/p/7398455.html 另外两个有价值的博文: http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html http://blog.csdn.net/heyutao007/article/details/5890103 一.MR的二次排序的需求说明 在mapreduce操作时,shuffle阶段会多次根据key值排序.但是在shu…
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理         我们把二次排序主要分为以下几个阶段. Map 起始阶段         在Map阶段,使用 job.setInputFormatClass() 定义的 InputFormat ,将输入的数据集分割成小数据块 split,同时 InputFormat 提供一个 RecordReade…
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGroupingComparator 在0.20.0以后使用是 job.setPartitionerClass(Partitioner p); job.setSortComparatorClass(RawComparator c); job.setGroupingComparatorClass(RawCom…
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 我们把二次排序主要分为以下几个阶段. Map 起始阶段 在Map阶段,使用 job.setInputFormatClass() 定义的 InputFormat ,将输入的数据集分割成小数据块 split,同时 InputFormat 提供一个 RecordReader的实现.本课程中使用的是 Te…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 ===> b,-3 c,2 b,-2 b,-2 b,1 a,100 b,6 b,-3 c,-7 c,-7 c,2 2. 分析[MapRedice过程] 1> 分析数据传入通过input()传入map() 2> map()对数据进行层层过滤,以达到我们想要的数据源, 3> 过滤方法中可添加自…
本文给出一个实现MapReduce二次排序的例子 package SortTest; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.*; public class SortComparable implements WritableComparable<SortComparable> { private Integer fi…
一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求.对于二次排序的实现,网络上已经有很多人分享过了,但是对二次排序的实现的原理以及整个MapReduce框架的处理流程的分析还是有非常大的出入,而且部分分析是没有经过验证的.本文将通过一个实际的MapReduce二次排序例子,讲述二次排序的实现和其MapReduce的整个处理流程,并且通过结果和map…