tflearn 保存模型重新训练】的更多相关文章

from:https://stackoverflow.com/questions/41616292/how-to-load-and-retrain-tflean-model This is to create a graph and save it graph1 = tf.Graph() with graph1.as_default(): network = input_data(shape=[None, MAX_DOCUMENT_LENGTH]) network = tflearn.embed…
tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用. 数据目录在data,data下放了汉字识别图片: data$ ls0  1  10  11  12  13  14  15  16  2  3  4  5  6  7  8  9 datag$ ls 0xxx.png yyy.png .... 代码: 如果将get model里的模型层数加非常深,训练时候很可能不会收敛,精度一直停留下1%以内. # -*- coding: utf-8 -*- from __future…
神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' log_dir = 'C:/Users/wk/Desktop/bky/log/' image,label = inputData.get_files(data_dir) image_batches,label_batches = inp…
参考:https://github.com/tflearn/tflearn/issues/964 解决方法: """ Tensorflow graph freezer Converts Tensorflow trained models in .pb Code adapted from: https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf#file-medium-tffreeze-1-py…
我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # 载入数据 (x_train,y_train),(x_test,y_test) = mnist…
训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要根据训练好的房价模型来预测用户房子的价格. 这样就需要在训练模型后把模型保存起来,在使用模型时把模型读取出来对输入的数据进行预测. 这里保存和读取模型有两种方法,都非常简单,差别在于保存和读取速度的快慢上,因为有一个是利用了多进程机制,下面我们分别来看一下. 创建模型 首先我们创建模型并训练数据:…
在模型完成训练后,我们需要将训练好的模型保存为一个文件供测试使用,或者因为一些原因我们需要继续之前的状态训练之前保存的模型,那么如何在PyTorch中保存和恢复模型呢? 方法一(推荐): 第一种方法也是官方推荐的方法,只保存和恢复模型中的参数. 保存 torch.save(the_model.state_dict(), PATH) 恢复 the_model = TheModelClass(*args, **kwargs) the_model.load_state_dict(torch.load(…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions/41265035/tensorflow-why-there-are-3-files-after-saving-the-model 1. 保存模型 tensorflow中saver使用如下代码保存模型时(假设程序位于/home/xxx/test,模型保存在/home/xxx/test/model.下…
训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要根据训练好的房价模型来预测用户房子的价格. 这样就需要在训练模型后把模型保存起来,在使用模型时把模型读取出来对输入的数据进行预测. 这里保存和读取模型有两种方法,都非常简单,差别在于保存和读取速度的快慢上,因为有一个是利用了多进程机制,下面我们分别来看一下. 创建模型 首先我们创建模型并训练数据:…