蒲公英(bzoj 2724)】的更多相关文章

题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便之后二分查找某个值在某个区间内出现的次数. 预处理出 f[i][j] 即从第 i 块到第 j 块的答案. 对于每个询问,中间的整块直接用预处理出的,两端的 sqrtn 级别的数暴力做,用二分查找它们出现的次数. 每次询问的复杂度是 sqrtn * logn . 注意:写代码的时候又出现了给 sort…
2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status][Discuss] Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 Output Sample Input 6 3 1 2 3 2 1 2 1 5 3 6 1 5 Sample Outp…
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和,事实上我是写后缀和..因为下标从0开始..), cnt[i][j][k]表示第i块中的前j个数中,k出现次数.预处理O(N1.5), 询问每次O(N0.5), 总O((N+M)N0.5) --------------------------------------------------------…
2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1908  Solved: 678 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 Output Sample Input 6 3 1 2 3 2 1 2 1 5 3 6 1 5 Sample Output 1 2 1 HINT 修正下: n <= 4…
Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 Output Sample Input 6 3 1 2 3 2 1 2 1 5 3 6 1 5 Sample Output 1 2 1 HINT 修正下: n <= 40000, m <= 50000 Solution 考虑分块,存两个东西,一个是两个块之间包含的区间的答案,另一个块的每个蒲公英的出现次数的前缀和 之前还要离散化 询问的…
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2724 [算法] 分块算法在线维护区间众数 分块算法的精髓就在于 : 大段维护,局部朴素 这一题,我们可以将序列分成T段,那么每一段的长度就是(N/T) 对于每个询问,设l处于第p段,r处于第q段,那么 : 若p = q,用朴素算法计算出区间众数即可 否则,将这个序列分为三段 : 1.[L,R[p]] 2. [L[p+1],R[q-1]] 3. [L[q],r] 显然,区间众数只可能…
传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][j-1],j中出现的数}$,复杂度$O(N^2/S)$,常数比较小吧 最近用$pair$上瘾了... 然后查询$[l,r]$时,整块直接查,两边不完整的枚举出现的数,然后加上整块里出现次数来更新 求整块的出现次数,可以用$v[i]$表示数字$i$出现位置,二分来找,复杂度$O(NSlogN)$ 或者…
分块,预处理出每两个块范围内的众数,然后在暴力枚举块外的进行比较 那么怎么知道每一个数出现的次数呢?离散后,对于每一个数,维护一个动态数组就好了 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<vector> #include<cmath> #include<map> #define N 40005 usi…
题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对于零散部分,我们还需要知道它们在区间中的出现次数.这部分至多有2sqrt(n)个 由于没有修改,离散化后对于每个数x开一个vector,把x出现位置push_back进去,查x时二分即可. 像普通分块一样更新即可.之前写了一堆特判 醉了 这个块大小怎么算..没算出来. //2520kb 19652m…
题意 给出一个序列,在线询问区间众数.如果众数有多个,输出最小的那个. 题解 这是一道分块模板题. 一个询问的区间的众数,可能是中间"整块"区间的众数,也可能是左右两侧零散的数中的任意一个.为了\(O(\sqrt n)\)求出究竟是哪一个,我们需要在一次对两侧零散点的扫描之后\(O(1)\)求出被扫数在区间内的的出现次数. 所以需要预处理的有: cnt[i][j]: i在前j块中出现的次数 mode[i][j]: 第i块到第j块组成的大区间的众数 #include <cstdio…