题目大意 对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\) (\(n,m\leq10^9,k\leq2000\)) 题解 这个人(点这里)讲得很清楚\(\color{white}{\text{shing太强了}}\) 代码 #include<algorithm> #include<cmath> #include<cstdio>…
传送门 不会,先坑着 https://kelin.blog.luogu.org/solution-p1587 //minamoto #include<cstdio> #include<cmath> #include<algorithm> using namespace std; ,E=2e6+; typedef int arr[N];typedef long long ll; struct Am{int nx,x,w;}e1[E]; struct Ans{int nx,…
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那么出现循环就要使的某一次除完后的余数在前面出现过.并且有欧拉定理\(a^{\varphi(n)}\equiv 1 (\mod n)(\gcd(a,n)=1)\),这样可以使得在计算小数点后一位时的余数在若干次后再次出现 然后要使得数值不同,所以其实要求的是这个东西\[\sum_{i=1}^{n}\sum_{j…
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数 n 和 m,在 k 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 x/y 表示,其中 1≤x≤n,1≤y≤m,且 x,y是整数.一个数是纯循环的,当且仅当其可以写成以下形式:a.c1˙c2c3…cp-1cp˙其中,a 是一…
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的分数不能记录 所以 \((i,j)==1\) 对于是一个纯循环的数我们先从最熟悉的10进制下说起. 可以发现\(\frac{1}{7},\frac{1}{13}\)等等都是纯循环的 而\(\frac{1}{6},\frac{1}{4}\)等等非纯循环. 于是可以发现 当j和10互质的时候此时是纯循环…
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y互质,存在len使该式成立. 于是现在要求的就是 k是固定的,先不管后面一部分.套路地化式子: 设f(i)=[i⊥k].注意到k很小,并且显然有gcd(j,k)=gcd(j%k,k).于是O(k)的预处理出f的前缀和. 那么几乎已经做到线性了,能拿到84分,感觉非常棒. 然而要A掉还需要低于线性的做…
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数n和m,在k进制下,有多少个数值上互不相等的纯循环小数,可以用分数 xy 表示,其中 1≤x≤n,1≤y≤m,且 x,y是整数.一个数是纯循环的,当且仅当其可以写成以下形式:a.c1˙c2c3…cp-1cp˙其中,a 是一个整数,p≥1:对于 1≤i≤p,ci是 kk 进制下的一位数字.例…
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10\)进制下如果\(\frac{x}{y}\)是纯循环的,只要\(2 \perp y\)且\(5 \perp y\) 可以猜想在\(k\)进制下同样成立 证明: 若\(\frac{x}{y}\)为纯循环小数,设其循环节长度为\(l\),那么一定满足 \[\{ \frac{xk^{l}}{y} \} =…
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k  进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数 n 和 m,在  kk 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 xy 表示,其中 1≤x≤n,1≤y≤m,且 x,y是整数 .一个数是纯循环的,当且仅当其可以写成以下形式:a.c1˙c2c3…cp-1cp˙其中,a 是一个整数,p≥1:对于 1 ≤i≤p,ci是 k…
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑性的内容比较多,因此,像我这种什么都不会还眼瞎的马上就该退役回归文化课的辣鸡废柴蒟蒻/kel/kel/kk就会在debug上浪费无谓地消耗大量时间. 因此,在平时写代码时,养成良好的代码习惯(比如:确定常用的变量名,不轻易修改:即使是十分熟悉的函数,也认真写完每一行等)是非常重要的.考试时省下的10…
首先要求每个数互不相等,故有$x\perp y$. 可以发现$\frac{x}{y}$在$k$进制下为纯循环小数的充要条件为$x\cdot k^{len}\equiv x(mod\ y)$,即$y\perp k$. 接下来进行经典的推导:$$\begin{aligned}&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[i\perp j][j\perp k]\\=&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\s…
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k  进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数 n 和 m,在  kk 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 xy 表示,其中 1≤x≤n,1≤y≤m,且 x,y是整数 .一个数是纯循环的,当且仅当其可以写成以下形式:a.c1˙c2c3…cp-1cp˙其中,a 是一个整数,p≥1:对于 1 ≤i≤p,ci是 k…
原题链接 好妙的一道神仙题 题目大意 让你求在\(k\)进制下,\(\frac{x}{y}\)(\(x\in [1,n],y\in [1,m]\))中有多少个最简分数是纯循环小数 SOLUTION 首先查一下资料,你会发现在十进制下,一个分数是纯循环小数的充要条件是分母的质因子中不含\(2\)和\(5\).因为\(10=2\times 5\),于是我们猜在\(k\)进制下只要分母与\(k\)互质即可 orz,猜对了!但是怎么证明呢? 先在十进制下考虑,看一下题目给的提示,可以知道那些余数其实是\…
额,,网上一堆题解,,随便一找就找到笨蒟蒻扒的了. 这个比较神奇的是纯循环小数就是[(y,k)=1],题解有证明这个的,貌似就是k进制下的类似循环节,不会不会.. 然后这道题就变成了求这个东西:∑(x<=n)∑(y<=m) [(x,y)=1][(y,k)=1] 显然要反演一下, 出来这个东西∑(d<=n)[(d,k)==1] μ(d) (n/d) ∑ (j<=m/d) [(j,k)==1] 然后k固定,所以搞一个∑(d<=n)[(d,k)==1] μ(d)和 ∑ (j<…
\(\mathcal{Description}\)   Link.   给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb N\),且最简分数 \(\frac{x}{y}\) 在 \(k\) 进制下是纯循环小数(包括整数)的 \((x,y)\) 数量.   \(n,m\le10^9\),\(k\le2\times10^3\). \(\mathcal{Solution}\)   当你举几个十进制的纯循环小数就不难发现规律了…
P1587 [NOI2016]循环之美 题目描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 $k$ 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数 $n$ 和 $m$,在 $k$ 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 $\frac xy$ 表示,其中 $1≤x≤n,1≤y≤m$,且 $x,y$是整数.一个数是纯循环的,当且仅当其可以写成以下形式: $a.\dot{c_1} c_2…
[BZOJ4652]循环之美(莫比乌斯反演,杜教筛) 题解 到底在求什么呢... 首先不管他\(K\)进制的问题啦,真是烦死啦 所以,相当于有一个分数\(\frac{i}{j}\) 因为值要不相等 所以有\(i \perp j\),也就是\(gcd(i,j)=1\) 现在考虑\(K\)进制 先从熟悉的\(10\)进制入手 如果一个最简分数是纯循环小数 我们知道,他的分母里面不含\(2,5\) 而且,巧极了\(10=2*5\) 于是乎,\(YY\)一下 如果\(K\)进制中一个分数是纯循环小数 那…
Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x}{y}\)的形式,其中\(x\in[1,n],y\in[1,m]\).一个数是纯循环小数当且仅当它能写成\(a.\dot{c_1} c_2 c_3 \ldots c_{p-1}\dot{c_p}\)的形式. Solution 原题相当于求有多少个数对\((x,y)\)满足\(gcd(x,y)=1\)…
「NOI2016」循环之美 对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复. 不重复我们确保这个分数是最简分数即\((a,b)=1\) 满足要求需要满足第一位的余数在后面仍然出现,第一位余数是\(a\bmod b\),后面第\(x\)位的余数实际上是\(a\times k^x\bmod b\) 所以我们需要满足 \[ a\equiv a \times k^x\pmod b \] 有解 因为\((a,b)=1\),所以 \[ k^x\equiv 1\…
题目大意 "优秀的拆分"指将一个字符串拆分成AABB的形式 十次询问,每次给出一个字符串S(\(|S|\leq3*10^4\)),求它的所有子串的优秀的拆分的方案数之和 题解 此题过于优秀,题解先坑着 代码 #include<algorithm> #include<cmath> #include<cstdio> #include<cstdlib> #include<cstring> #include<ctime>…
题目大意 有\(n\)(\(n\leq 5*10^5\))个闭区间\([L_1,R_1],[L_2,R_2],...,[L_n,R_n]\)(\(\forall i\in [1,n],0\leq L_i\leq R_i\leq 10^9\)) 要选取\(m\)个区间,使这\(m\)个区间的交不为空,方案的花费为被选中的区间中 长度最长的区间的长度 减 长度最短的区间的长度 求花费最小的方案,或判断无解 题解 将\(n\)个区间按区间长度排序 问题转化成对于所有满足存在一点被\([L_l,R_l]…
题目大意 有一个\(n*m\)(\(n,m\leq10^9\))的网格,每个格子是空地或障碍(\(障碍数\leq10^5\)) 定义两块空地连通,当且仅当它们是"相邻的两块空地"或"存在一块空地与这两块空地连通的两块空地"(也就是四连通) 求至少添加多少块障碍物,使存在两块空地不连通,或者输出-1表示无解 题解 当只有一块空地或只有两块相邻的空地时,无解 有解时,发现总能找到一个角落,使只用两个障碍物就能将这个角落和外界分开(如图) 也就是说,答案不超过2 当初始的…
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \(k\) 进制下的纯循环小数. 题解: 设分子为 \(x\),分母为 \(y\). 首先,因为要求的是互不相等的分数,取最简分数,即 \(x\perp y\). 其次,要求是纯循环小数,考虑竖式除法的过程,可以发现 \(\displaystyle\frac{x}{y}\) 在 \(k\) 进制下纯循环…
前面部分比较简单,就是无脑化式子,简单点讲好了. 首先肯定在\((x,y)=1\)时才考虑这个分数,要求纯循环的话,不妨猜猜结论,就是y必须和K互质.所以答案是\(\sum_{i=1}^n \sum_{j=1}^m [(i,j)=1] [(j,k)=1]\). 然后用 \([(i,j)=1]=\sum_{d|i,j} \mu(d)\)大力化一化,很快就会得到: \[\sum_{d=1}^{min(n,m)} \mu(d) \frac{n}{d} \sum_{d|j,j\le m}[(j,k)=1…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ221.html 题解 首先把题目转化为求 \[\sum_{x=1}^n \sum_{y=1}^m [\gcd(x,y) = 1] [ \gcd(y,k) = 1]\] 推式子: \[\sum_{x=1}^n \sum_{y=1}^m [\gcd(x,y) = 1] [ \gcd(y,k) = 1]\\ = \sum_{i = 1}^{\min(n,m)} \mu(i) \sum_{x=1}^{\left \lfloor…
题目链接:循环之美 这道题感觉非常优美--能有一个这么优美的题面和较高的思维难度真的不容易-- 为了表示方便,让我先讲一下两个符号.\([a]\)表示如果\(a\)为真,那么返回\(1\),否则返回\(0\): \(a \perp b\)表示\(a\)与\(b\)互质. 首先,我们需要考虑一个分数要成为纯循环小数需要满足什么条件. 我们先来回想一下,我们是怎样使用除法来判断一个分数$\frac{x}{y}$是否是纯循环小数的.显然我们是一路除下去,什么时候出现了相同的余数,那么这个数就是一个循环…
题解 我们要求的其实是这个东西= = \(\sum_{i = 1}^{n}\sum_{j = 1}^{n}[(i,j) == 1][(j,k) == 1]\) 然后变一下形 \(\sum_{j = 1}^{n}[(j,k) == 1]\sum_{i = 1}^{n}[(i,j) == 1]\) \(\sum_{j = 1}^{n}[(j,k) == 1]\sum_{i = 1}^{n}\sum_{d|i,j}\mu(d)\) \(\sum_{j = 1}^{n}[(j,k) == 1]\sum_…
$n \leq 1e9,m \leq 1e9,k \leq 2000$,求$k$进制下$\frac{x}{y}$有多少种不同的纯循环数取值,$1 \leq x \leq n,1 \leq y \leq m$.纯循环数是指小数点后直接就开始循环,整数也算. 与上个题的丑陋相比这个题不知道美到哪里去..虽然自己没想出来. 提示说了,出现相同余数时有纯循环.假设循环节是$l$,那么$xk^l$和$x$除$y$会得到相同余数--同余!$xk^l \equiv x (\mod y)$.由于题目要互不相同的…
传送门. 题解 感觉这题最难的是第一个结论. x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2.5的倍数就好了. 因为十进制下除以2和5是除得尽的. 必然会多出来的什么东西. 如果是k进制,可以类比得gcd(y,k)=1. 证明: 假设纯循环的位数是l 则\(x*k^l\equiv x(mod~y)\) \(k^l\equiv 1(mod~y)\) 要存在l的话,就必须有\(gcd(k,y)=1\),反过来一样. 反演: \(Ans=\sum_{i=1}^n\sum_{j=1}…
对于一个分数x/y(x和y互素),在k进制下为纯循环当且仅当y和k互素证明:任意一个分数都可以写成0.abbbbbbbb的形式(不妨假设a尽量短),设a的位数为l1,b的位数为l2,那么原分数即$\frac {b-a}{(k^{l2}-1)*k^{l1}}$必要性:当l1=0的时候分母与k互素,即纯循环推出了y与k互素充分性:反证法,设存在使得$l1>0$且$k^{l1}|b-a$,那么必然有$k|b-a$,也就是b和a的最后一位相同,那么可以将a的最后一位与b的前l2-1位组成新的循环节,与a…