C语言 汉诺塔问题】的更多相关文章

//凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 汉诺塔是由三根杆子A,B,C组成的.A杆上有n个(n>1)穿孔圆盘,盘的尺寸由下到上依次变小.要求按下列规则将所有圆盘移至C杆:每次只能移动一个圆盘:大盘不能叠在小盘上面.提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须尊循上述两条规则.问:如何移?最少要移动多少次? 分析: (1)将A上n-1个盘子借助C移动到B: (2)将A剩下的一个盘子移动到C: (3)将B上n-1个盘子借…
#include<stdio.h> int main() { void hano_tower(int n,char one,char two,char three); int m=0; printf("Please enter a number:\n"); scanf("%d",&m); printf("You need move like this:\n"); hano_tower(m,'A','B','C'); retur…
之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅.今天无聊,重温<算法:c语言实现>一书,又遇见了这个问题,心头一紧,担心要费些时间才能写出代码,没想到的是,再理解了书中对递归的定义,蒙住源代码动手写,发现很快就写出来了,甚至都没有费力去模拟整个汉诺塔移动过程,只是根据递归的要领(数学归纳法)分析了一下问题,便得出了一个递归形式,照此写代码,竟然没错.由此也醒悟到,很多时候,用递归写代码并不难,但却常常…
题意描述:   用汇编语言实现汉诺塔.只需要显示移盘次序,不必显示所移盘的大小,例如: X>Z,X>Y,Z>Y,X>Z,..... (n阶Hanoi塔问题)假设有三个分别命名为X.Y.Z的塔座,在塔座X上插有n个直径大小各不相同.依小到大编号为1,2,…,n的圆盘.现要求将X轴上的n个圆盘移至塔座Z上并仍按同样顺序叠排,圆盘移动时必须遵循下列规则: 1)每次只能移动一个圆盘: 2)圆盘可以插在X.Y.Z中的任一塔座上: 3)任何时刻都不能将一个较大的圆盘压在较小的圆盘之上. 汉诺塔…
用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 github地址:https://github.com/404name/C-game 0.主体思路 输入要递归的汉诺塔数目,在原来的汉诺塔基础上新增move_play函数展示递归,用next数组存储每种移动状态.对应的从哪到哪可自动对应相应的移动方式自动移动. 1.变界面大小依照输入递归数改变 init函数按…
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. --图片来源于百度百科 A,B,C三个柱子,当A柱子上只有一个盘子时直接将该盘子从A柱子移…
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子, 在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上. 并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 汉诺塔的递归实现算法,将A中的圆盘借助B圆盘完全移动到C圆盘上, 每次只能移动一个圆盘,并且每次移动时大盘不能放在小盘上面 递归函数的伪算法为如下: if(n == 1)    直接将A柱子上的圆盘从…
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思想. 这个是常见的一种数学算法,其实它就是递归的本质.我们要求的是所有数的乘积,那么我们就先求出两个数的乘积,然后再根据这两个数的乘积去求第三个数的乘积,这样每一次我们实际上都是进行的两个数的相乘,也就是我们把一个很多个数的相乘转换为了两个数的相乘. 2.通过上面的例子可以发现,递归就是将大型复杂问…
个人觉得汉诺塔这个递归算法比电子老鼠的难了一些,不过一旦理解了也还是可以的,其实网上也有很多代码,可以直接参考.记得大一开始时就做过汉诺塔的习题,但是那时代码写得很长很长,也是不理解递归的结果.现在想起来汉诺塔的算法就3个步骤:第一,把a上的n-1个盘通过c移动到b.第二,把a上的最下面的盘移到c.第三,因为n-1个盘全在b上了,所以把b当做a重复以上步骤就好了.所以算法看起来就简单多了.不过,思考过程还是很痛苦的,难以理解.递归中会保存数据的好处在这里又得到体现,太神奇了. 汉诺塔代码如下:…
函数不能嵌套定义,但能嵌套调用(在调用一个函数的过程中再调用另一个函数) 函数间接或直接调用自己,称为递归调用  汉诺塔问题 思想:简化为较为简单的问题 n=2 较为复杂的问题,采用数学归纳方法分析 递归什么时候终止:只剩一个圆盘的情况    A--到--B 费波纳茨数列 根据最大公约数的如下3条性质,采用递归法编写计算最大公约数的函数Gcd(),在主函数中调用该函数计算并输出从键盘任意输入的两正整数的最大公约数.性质1  如果a>b,则a和b与a-b和b的最大公约数相同,即Gcd(a, b)…