【hdu6185】Covering(骨牌覆盖)】的更多相关文章

2017ACM/ICPC广西邀请赛-重现赛1004Covering 题意 n*4的格子,用1*2和2*1的砖块覆盖.问方案数(mod 1e9+7).(n不超过1e9) 题解 递推了个式子然后错位相减. f[n] =f[n-1]+4f[n-2]+2f[n-3]+3f[n-4]+2f[n-5]+2f[n-6]+..+(x%2?2:3)f[n-x] f[n-2]= f[n-3]+4f[n-4]+2f[n-5]+3f[n-6]+..+(x%2?2:3)f[n-x] f[n] =f[n-1]+5f[n-2…
先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假设有3步,那整个分布范围相当于一个立体几何图形,上界b和下界a可当成一个x+y+z=a或b的平面看待,算出x<=X1 x>=-X1 y<=X2 y>=-X2 z<=X3 z>=-X3 发现体积就是f(x1,x2,x3)+f(-x1,-x2,x3)+f(-x1,x2,-x3)…
#1151 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个…
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢?举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 19…
描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 12357 样例输入 62247088 样例输出 4037 提示:3xN骨牌…
原问题:骨牌覆盖问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢?举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 19999997…
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] = dp[i-1] + dp[i-2],递推数列可以用矩阵快速幂来加速计算 我们可以用状态dp来做这一题,如果某个格子上被铺了骨牌,就标记为1,否则为0 那么每一列一共有8个状态. 两种状态的表示法 第一种: dp[i][s] 表示填满第i行后,第i+1行的状态为s, 那么s的转移情况如下, 0->…
1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的.   Input 第1行:一个数N,N为正整数的数量. 第2 - N+1行,N个正整数. (N <= 100, 所有正整数的和 <= 10000) Output 输出这个最小差 Input示例 5 1 2 3 4 5 Output示例 1这题不就是小李打怪兽吗,不知道谁模仿谁,呵呵,刚还是我编的题里的,dp,证明一下(要证明什…
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 M…
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢?举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 19…
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 12…
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢?举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 19999997 样例输入 62247…
本想着做一下第九届河南省省赛题,结果被这个类似骨牌覆盖的题卡住了,队友然我去hihoCoder上老老实实把骨牌覆盖一.二.三做完,这题就没什么问题了.虽然很不情愿,但还是去见识了一下.  骨牌覆盖问题主要解决用1*2的骨牌来覆盖K*N的棋盘,求有多少种覆盖方法.k一般在7以内.比如hihocoder #1143用1*2的骨牌覆盖2*N的棋盘,很明显是个斐波那契数列.hihocider#1151问题上升到用1*2的骨牌覆盖3*N的棋盘.再上升到#1162的k*N的棋盘. #1143 : 骨牌覆盖问…
前面我们说了一些简单的骨牌覆盖问题,有了上面的经验,我们可以尝试解决K*M的 思路和上一篇文章所提到的3*N的 很类似: 依然是矩阵快速幂.我们需要把一个小的边固定下来作为的已知边,然后进行矩阵快速幂,要进行矩阵快速幂,我们需要知道初始矩阵,与构造出的递推矩阵: 我们如何得到这两个矩阵? 初始矩阵:矩阵宽度为 2^n  次方:第一排只可能出现,0或者横着放置,不过我们可以再退一步,第0行时,的状态,我们只能够看做全部填满.最初状态是最后一个为1:所以这样我们就得到了初始矩阵. 递推矩阵怎么得到:…
#1162 : 骨牌覆盖问题·三 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 前两周里,我们讲解了2xN,3xN骨牌覆盖的问题,并且引入了两种不同的递推方法.这一次我们再加强一次题目,对于给定的K和N,我们需要去求KxN棋盘的覆盖方案数. 提示:KxN骨牌覆盖 输入 第1行:2个整数N.表示棋盘宽度为k,长度为N.2≤K≤7,1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 1235…
#1151 : 骨牌覆盖问题·二 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.…
1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: week41_1.PNG 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,…
题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[0]=1,f[1]=1,f[2]=2.其实跟下面的递推思路差不多吧.但是关于这种简单,一般都可以用矩阵快速幂解决,即O(logn)时间内解决.主要难点是构造初始矩阵,如果是后面一个数字是由卡面两个数字相加而成的,那么一般可构造一个2*2的01矩阵,才这么小,随便试试吧,只要乘完的结果第二位是答案即可…
题意: 用一个2*1的骨牌来覆盖一个n*m的矩形,问有多少种方案?(1<=n,m<=11) 思路: 很经典的题目,如果n和m都是奇数,那么答案为0.同uva11270这道题. 只需要m个bit来记录状态行了,标记是否已经被覆盖到了.考虑当前格子,如果上面格子未覆盖,则必须放竖的,否则,将再也覆盖不到此格子:如果上面格子已经覆盖,而左边未覆盖,那么还可以选择放横的,或者是不放(左边若未覆盖可以由左下格子去考虑). //#include <bits/stdc++.h> #include…
上周的3*N的骨牌,因为状态只有8中,所以我们可以手算出状态转移的矩阵 但是这周是k*N,状态矩阵不好手算,都是我们改成用程序自动生成一个状态转移的矩阵就行了,然后用这个矩阵进行快速幂即可 枚举枚举上下两行的状态,然后判断上一行的状态能不能转移为这一行的状态 如果上一行的某个位置为0,那么这一行的该位置必须为1 如果上一行的某个位置为1,那么这一行的该位置可以为0 如果上一行的某个位置为1,且这一行的该位置为1, 那么上下两行该位置相邻的位置也得为1 根据这三条规则判断状态能不能转移成功,然后生…
由于棋盘只有两行,所以如果第i列的骨牌竖着放,那么就转移为第1列到第i-1列骨牌有多少种摆法 如果第一行第i列骨牌横着放,那么第二行第i列也要横着放,那么就转移为了第1列到第i-2列骨牌有多少种方法 dp[i] = dp[i-1] + dp[i-2],但是列数太多了. 这种递推的算式可以用矩阵快速幂来优化 所以时间复杂度瞬间变为O(logn) #include <stdio.h> #include <string.h> #include <stdlib.h> #incl…
Input 输入N(N <= 1000) Output 输出数量 Mod 10^9 + 7 Input示例 3 Output示例 3 思路:对于第x块骨牌的情况,我们用a[x]表示其方法数:其比x-1块骨牌时多了一块骨牌,多出的骨牌有两种放法: 1.我们可以直接将其竖着添加在最末端,那么其排列数就为就是前x-1块骨牌的排列数,即为a[x-1]: 2. 我们也可以将其和其前面一块骨牌一起横着放,那么其排列数就是前x-2块骨牌的排列数,即为a[x-2]: 所以有 a[x]=a[x-1]+a[x-2]…
题意:有一个k*n的棋盘,要求用1*2的骨牌来铺满,有多少种方案?(k<8,n<100000001) 思路: 由于k是比较小,但是又不那么小,可以专门构造这样的一个矩阵M,使得只要我们有一个初始矩阵R,求得ans矩阵,然后答案就在ans中了.ans=R*Mn. M的大小应该是2k*2k,所以当k稍微大一些就不合适存储这个矩阵了,而且里面大部分都是0,很浪费.由于k<8,所以M的大小为128*128是可以接受的.复杂度是O(23*k*logn),大概是千万级别的. #include <…
题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次,再来乘以初始矩阵init{0,0,0,0,0,0,0,1}后,变成矩阵ans{x,x,x,x,x,x,x,y},y就是答案了,而x不必管. 主要在这个矩阵的构造,假设棋盘是放竖直的(即n*3),那么考虑在第i行进行填放,需要考虑到第i-1行的所有可能的状态(注意i-2行必须是已经填满了,否则第i行无…
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 在2*N的一个长方形方格中,用一个1*2的骨牌排满方格.   问有多少种不同的排列方法.   例如:2 * 3的方格,共有3种不同的排法.(由于方案的数量巨大,只输出 Mod 10^9 + 7 的结果) Input 输入N(N <= 1000) Output 输出数量 Mod 10^9 + 7 Input示例 3 Output示例 3   2*1有一种 2*2有2*1+2*1两种 2*3有2*1+…
原题链接:https://vjudge.net/contest/331993#problem/B 在2*N的一个长方形方格中,用一个1*2的骨牌排满方格. 问有多少种不同的排列方法. 例如:2 * 3的方格,共有3种不同的排法.(由于方案的数量巨大,只输出 Mod 10^9 + 7 的结果) Input输入N(N <= 1000)Output输出数量 Mod 10^9 + 7Sample Input 3 Sample Output 3 #include<bits/stdc++.h> us…
题目链接:http://hihocoder.com/problemset/problem/1143 这个递推还是很经典的,结果是斐波那契数列.f(i) = f(i-1) + f(i-2).数据范围太大了,应该用快速幂加速下. /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ mind! ┛┗┛┗┛┃\○/ ┓┏┓┏┓┃ / ┛┗┛┗┛┃ノ) ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┃┃┃┃┃┃ ┻┻┻┻┻┻ */ #incl…
题目:http://poj.org/problem?id=2411 状压dp.注意一下代码中标记的地方. #include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,m,lm; ][<<],ans; <<]; void pre() { memset(list,,sizeof list); ;i<lm;i++) { ; ,u=i;//////…
不难发现,只有$1 * 2, 2 * 2$两种方法 因此,设$f[i]$表示填满$1 - i$的方案数 那么有$f[i] = f[i - 1] + f[i - 2]$,其实就是斐波那契数列.... 复杂度$O(n)$ #include <cstdio> #include <cstring> #include <iostream> using namespace std; #define ri register int #define mod 1000000007 int…
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and r…