hbase-bloom filter】的更多相关文章

阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是否属于这个集合.BF其优点在于: 插入和查询复杂度都是O(n) 空间利用率极高. 例子1: 像Yahoo这类的公共邮件服务提供商,总是需要过滤垃圾邮件. 假设有50亿个邮件地址,需要存储过滤的方法有: 所有邮件地址都存储到数据库. 缺点:每次都需要查询数据库,效率低. 使用Hashtable保存到内…
原文:蘑菇先生,http://www.cnblogs.com/mushroom/p/4556801.html 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是否属于这个集合.BF其优点在于: 插入和查询复杂度都是O(n) 空间利用率极高. 例子1: 像Yahoo这类的公共邮件服务提供商,总是需要过滤垃圾邮件. 假设有50亿个邮件地址,需要存储过滤的方法有: 所有邮件地址都存储到数据库.缺点:每次都需要…
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一…
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一…
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中. 算法: 1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数 2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0 3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1 4. 判断某个key是否…
1.Bloom Filter  默认的 BloomFilter filter =new BloomFilter(10,2,1); // 过滤器长度为10 ,用2哈希函数,MURMUR_HASH (1)     Key  key  =new Key("hadoop".getBytes());     filter.add(key);     Key hb  = new Key("hbase".getBytes());     boolean has  =filter.…
算法背景 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间. 在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低. 此时需要考虑解决的问题就是,在数据量比较大的情况下,既满足时间要求,又满足…
1.布隆过滤器是什么? 又快又小的处理方法 布隆过滤器(Bloom Filter):是一种空间效率极高的概率型算法和数据结构,用于判断一个元素是否在集合中(类似Hashset). 它的核心一个很长的二进制向量和一系列hash函数 数组长度以及hash函数的个数都是动态确定的. Hash函数:SHA1,SHA256,MD5.. 2.应用的经典场景 一个像Yahoo,HotMail和Gmail那样的公众电子邮件提供商, 总是需要过滤来自发送垃圾邮件的人的垃圾邮件, 一个办法就是记录下那些发送垃圾邮件…
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.hash原理Hash (哈希,或者散列)函数在计算机领域,尤其是数据快速查找领域,加密领域用的极广.其作用是将一个大的数据集映射到一个小…
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11632622.html 背景 比如刷抖音的时候,抖音会不停的推荐新的内容,而它每次推荐时候都要去重,以去掉那些我们已经看过的内容,问题是抖音是如何实现推送去重的? Bloom Filter方案 Bloom Filter就是专门用来解决这种去重问题的.它在起到去重作用的同时,在空间上还能节省90%以上,但是稍微有点不精确,有一定的误判概率. 可以把布隆过滤器理解成一个不怎么精确的set结构,当使用它的…