本文来自<ArcFace: Additive Angular Margin Loss for Deep Face Recognition>,时间线为2018年1月.是洞见的作品,一作目前在英国帝国理工大学读博. CNN近些年在人脸识别上效果显著,为了增强softmax loss的辨识性特征学习能力,Sphereface提出的multiplicative angular margin,参考文献[43,44]提出的additive cosine margin等分别通过将角度边际和余弦边际整合到lo…
本文来自<Large-Margin Softmax Loss for Convolutional Neural Networks>,时间线为2016年12月,是北大和CMU的作品. 0 引言 过去十几年,CNN被应用在各个领域.大家设计的结构,基本都包含卷积层和池化层,可以将局部特征转换成全局特征,并具有很强的视觉表征能力.在面对更复杂的数据下,结构也变得更深(VGG),更小的strides(VGG),新的非线性激活函数(ReLU).同时受益于很强的学习能力,CNN同样需要面对过拟合的问题.所…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
https://www.wxnmh.com/thread-1528249.htm https://www.wxnmh.com/thread-1528251.htm https://www.wxnmh.com/thread-1528254.htm Word embeddings using pre-trained embeddings (Kim, 2014) [12] 使用预训练embedding The optimal dimensionality of word embeddings is m…
Face-Resources Following is a growing list of some of the materials I found on the web for research on face recognition algorithm. Papers DeepFace.A work from Facebook. FaceNet.A work from Google. One Millisecond Face Alignment with an Ensemble of Re…
    import lib needed¶ In [1]: from PIL import Image import numpy as np import matplotlib.pyplot as plt import re from glob import glob   begin, load data¶ In [2]: def load_data(train_path='train/',test_path='test/'): train_list=glob(r'train/*.png')…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
本文来自<MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices>,时间线为2018年4月.是北京交通大学和握奇数据公司的作品. 人脸发展至今,效果相比传统方法有了很大的提升,然而受限于机器资源和实时性部署等需求,需要考虑诸如MobileNet等网络的使用. 0 引言 在越来越多的手机和嵌入式设备上,人脸验证变成越来越流行的一个认证技术.然而,现在高准确度的人脸验证模型都…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8858998.html 论文: Ring loss: Convex Feature Normalization for Face Recognition https://arxiv.org/abs/1803.00130v1 理解的不对的地方请见谅 Ring loss将特征限制到缩放后的单位圆上,同时能保持凸性,来得到更稳健的特征. 该损失函数作为辅助的损失,结合Softmax或者A-softmax等损…