Boosting方法实际上是采用加法模型与前向分布算法.在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法来表示.以决策树为基学习器的提升方法称为提升树(Boosting Tree).对分类问题决策树是CART分类树,对回归问题决策树是CART回归树. 1.前向分布算法 引入加法模型 在给定了训练数据和损失函数$L(y, f(x))$ 的条件下,可以通过损失函数最小化来学习加法模型 然而对于这个问题是个很复杂的优化问题,而且要训练的参数非常的多,前向分布算法的提出就是为了解决模型的…
RF.GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性.  根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系.必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表就是Boosting,后者的代表是Bagging和“随机森林”(Random Forest). 1. GBDT和XGBoost区别 XGBOOS…
本质上GBDT+LR是一种具有stacking思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于Facebook 2014年的论文 Practical Lessons from Predicting Clicks on Ads at Facebook . GBDT+LR 使用最广泛的场景是CTR点击率预估,即预测当给用户推送的广告会不会被用户点击. 点击率预估模型涉及的训练样本一般是上亿级别,样本量大,模型常采用速度较快的LR.但LR是线性模型,学习能力有限,此时特征工程尤其重要.现…
梯度降级算法简介 之前如果需要求出最佳的线性回归模型,就需要求出代价函数的最小值.在上一篇文章中,求解的问题比较简单,只有一个简单的参数.梯度降级算法就可以用来求出代价函数最小值. 梯度降级算法的在维基的定义: 梯度下降法是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索 首先,复习一下之前前面的讲过求解最佳的代价函数的过程 那么如何通过梯度降级算法解决这个问题呢?首先对θ0和θ…
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们之间有非常紧密的联系,GBDT是以决策树(CART)为基学习器的GB算法,xgboost扩展和改进了GDBT,xgboost算法更快,准确率也相对高一些. 1. Gradient boosting(GB) 机器学习中的学习算法的目标是为了优化或者说最小化loss Function, Gradient…
gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于yahoo,后被广泛应用在搜索排序.点击率预估上. xgboost是陈天奇大牛新开发的Boosting库.它是一个大规模.分布式的通用Gradient Boosting(GBDT)库,它在Gradient Boosting框架下实现了GBDT和一些广义的线性机器学习算法. 本文首先讲解了gbdt的原…
一: 提升方法概述 提升方法是一种常用的统计学习方法,其实就是将多个弱学习器提升(boost)为一个强学习器的算法.其工作机制是通过一个弱学习算法,从初始训练集中训练出一个弱学习器,再根据弱学习器的表现对训练样本分布进行调整,使得先前弱学习器做错的训练样本在后续受到更多的关注,然后基于调整后的样本分布来训练下一个弱学习器.如此反复学习 ,得到一系列的弱学习器,然后 组合这些弱学习器,构成一个强学习器.提升方法生成的弱学习器之间存在强依赖关系,必须串行生成一系列的弱学习器.目前提升方法主要有 Ad…
转自 http://blog.csdn.net/u014568921/article/details/49383379 另外一个很容易理解的文章 :http://www.jianshu.com/p/005a4e6ac775 更多参考如下 机器学习(四)— 从gbdt到xgboost 机器学习常见算法个人总结(面试用) xgboost入门与实战(原理篇) Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting R…
1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,gbdt在各种竞赛是大放异彩.原因大概有几个,一是效果确实挺不错.二是即可以用于分类也可以用于回归.三是可以筛选特征.这三点实在是太吸引人了,导致在面试的时候大家也非常喜欢问这个算法. gbdt的面试考核点,大致有下面几个: gbdt 的算法的流程? gbdt 如何选择特征 ? gbdt 如何构建特征 ? gbdt 如何用于分类? gbdt 通过什么方式减少误差 ?…
http://www-personal.umich.edu/~jizhu/jizhu/wuke/Friedman-AoS01.pdf https://www.cnblogs.com/bentuwuying/p/6667267.html https://www.cnblogs.com/ModifyRong/p/7744987.html https://www.cnblogs.com/bentuwuying/p/6264004.html 1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真…