之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histograms of Oriented Gradients)特征的基本思想:The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of…
简单介绍 BRIEF是2010年的一篇名为<BRIEF:Binary Robust Independent Elementary Features>的文章中提出,BRIEF是对已检測到的特征点进行描写叙述,它是一种二进制编码的描写叙述子,摈弃了利用区域灰度直方图描写叙述特征点的传统方法,大大的加快了特征描写叙述符建立的速度,同一时候也极大的减少了特征匹配的时间,是一种非常高速,非常有潜力的算法. BRIEF详细算法 因为BRIEF不过特征描写叙述子.所以事先要得到特征点的位置,能够利用FAST…
Surf(Speed Up Robust Feature) Surf算法的原理                                                                           1.构建Hessian矩阵构造高斯金字塔尺度空间 事实上surf构造的金字塔图像与sift有非常大不同,就是由于这些不同才加快了其检測的速度. Sift採用的是DOG图像.而surf採用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方…
HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.此方法使用了图像的本身的梯度方向特征,类似于边缘方向直方图方法,SIFT描述子,和上下文形状方法,但其特征在于其在一个网格密集的大小统一的方格单元上计算,而且为了提高精确度使用了重叠的局部对比度归一化的方法. 这篇文章的作者Navneet Dalal和Bi…
SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提取方法. 1. SIFT 特征  实现方法: SIFT 特征通常与使用SIFT检测器得到的感兴趣点一起使用.这些感兴趣点与一个特定的方向和尺度(scale)相关联.通常是在对一个图像中的方形区域通过相应的方向和尺度变换后,再计算该区域的SIFT特征. 首先计算梯度方向和幅值(使用Canny边缘算子在…
Face recognition using Histograms of Oriented Gradients 这篇论文的主要内容是将Hog算子应用到人脸识别上. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/40757997 1. Main Contribution Extract Hog descriptors from a regular grid. Fusion of HOG descriptors at different…
网上去找关于HOG的资料,发现理解性的较少,并且较为冗长,为方便大家理解便自己写了篇,希望能对奋斗在特征提取第一线的同志们有所帮助: HOG即histogram of oriented gradient, 是用于目标检測的特征描写叙述子,该技术将图像局部出现的方向梯度次数进行计数,该方法和边缘方向直方图.scale-invariant feature transform类似,不同的是hog的计算基于一致空间的密度矩阵来提高准确率.Navneet Dalal and Bill Triggs首先在0…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检測的特征描写叙述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检測中获得了极大的成功.须要提醒的是,HOG+SVM进行行人检測的方法是法国研究人员Dalal在2005的CVPR上提出的,而现在尽管有非常多行人检測算法不断提出,但基本都是以HOG+SVM的思路为主. (…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…
1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主…