摘要: 在软件定义网络中,控制平面在物理上与转发平面分离,控制软件使用开放接口(例如OpenFlow)对转发平面(例如,交换机和路由器)进行编程. 本文旨在克服当前交换芯片和OpenFlow协议的两个局限性: 当前的硬件交换机非常严格,仅允许在一组固定的字段上进行“匹配操作”处理 OpenFlow规范仅定义了有限的数据包处理动作 我们提出了RMT(可重配置匹配表)模型,这是一种受RISC启发的,用于交换芯片的新流水线体系结构.我们确定了一些基本的动作原语集,以指定在硬件中如何处理标头. RMT允…
论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似…
Name of article:Flow-level State Transition as a New Switch Primitive for SDN Origin of the article:Moshref M , Bhargava A , Gupta A , et al. [ACM Press the 2014 ACM conference - Chicago, Illinois, USA (2014.08.17-2014.08.22)] Proceedings of the 2014…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
Event StoryLine Corpus 论文阅读 本文是对 Caselli T, Vossen P. The event storyline corpus: A new benchmark for causal and temporal relation extraction[C]//Proceedings of the Events and Stories in the News Workshop. 2017: 77-86. 阅读的总结.有任何问题请邮件联系 arrogant262@gm…
YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YOLO已经发布了两个版本,在下文中分别称为YOLO V1和YOLO V2.YOLO V2的代码目前作为Darknet的一部分开源在GitHub.在这篇博客中,记录了阅读YOLO两个版本论文中的重点内容,并着重总结V2版本的改进. Update@2018/04: YOLO v3已经发布!可以参考我的博客…
快速人体姿态估计:CVPR2019论文阅读 Fast Human Pose Estimation 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Fast_Human_Pose_Estimation_CVPR_2019_paper.pdf 摘要 现有的人体姿态估计方法通常只考虑如何提高模型的泛化性能,而忽略了显著的效率问题.这导致在实际应用中开发可扩展性和成本效益较差的重型模型.在这项工作中,我们研究了研究不足但…
Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读 Action4D: Online Action Recognition in the Crowd and Clutter 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/You_Action4D_Online_Action_Recognition_in_the_Crowd_and_Clutter_CVPR_2019_paper.pdf 摘要 在拥挤杂乱的环…
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
[论文阅读] ALM-HCS(高对比场景自适应对数映射) 文章: Adaptive Logarithmic Mapping for Displaying High Contrast Scenes 1. 论文目的 将高动态范围图像映射到机器可以显示的动态范围, 作者提出了几个要求: The design of our tone mapping technique was guided by a few rules. It must provide consistent results despit…
AlphaTensor论文阅读分析 目前只是大概了解了AlphaTensor的思路和效果,完善ing deepmind博客在 https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor 论文是 https://www.nature.com/articles/s41586-022-05172-4 解决"如何快速计算矩阵乘法"的问题 问题建模 变成single-player game \[\tau_…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体. Problem formulation: Given an image, determine the most influential item in the scene in terms of region of i…
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原文:Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 博文参考:Doublle Tree的博客中Evaluate the Malignancy of Pulmonary Nodu…
论文阅读——FCOS: Fully Convolutional One-Stage Object Detection 概述 目前anchor-free大热,从DenseBoxes到CornerNet.ExtremeNet,以及最近的FSAF.FoveaBox,避免了复杂的超参数设计,而且具有很好的检测效果.本文作者提出了一种全卷积的单阶段目标检测算法,类似于语义分割的做法使用像素级预测.该检测框架简单有效,而且可以方便地用于其他任务. 简介 再啰嗦一下基于anchor的检测算法的缺陷: 1.检测…
论文阅读——FoveaBox: Beyond Anchor-based Object Detector 概述 这是一篇ArXiv 2019的文章,作者提出了一种新的anchor-free的目标检测框架FoveaBox,直接学习目标存在的可能性(预测类别敏感的语义map)和bbox的坐标(为可能存在目标的每个位置生成无类别的bbox).该算法的单模型(基于ResNeXt-101-FPN )在COCO数据集上的AP达到42.1%.代码尚未开源. 介绍 anchor弊端:额外的超参数设计很复杂:设计的…
论文阅读 | Region Proposal by Guided Anchoring 相关链接 论文地址:https://arxiv.org/abs/1901.03278 概述 众所周知,anchor策略是目标检测领域的基石.很多目标检测算法的高精度检测都依赖于密集的anchor策略,也就是在空间域上以预设的尺度和宽高比做均匀采样.但是,由于anchor策略产生大量冗余的anchor box,生成数目巨大的低质量负样本,导致正负样本严重失衡,而且还有IoU阈值设置.超参数设计困难等一系列问题.文…
脱离视频编解码.投入计算机视觉一年,这个博客也歇业一年,最近偷些时间回顾一下编解码,毕竟花费了整个研一的时间(虽然这一年基本上在上课). 之前写过几篇H.264标准的几篇介绍文章,详见:http://www.cnblogs.com/DwyaneTalk/category/615769.html 后来转入HEVC,相关知识就记录在某某云笔记了,最近整理出来重新看看,所以打算把与HEVC相关的.觉得有价值的放在这个博客里,希望对新人有所帮助. 这里只是一个目录,主要包括HEVC标准介绍.HEVC帧间…
 论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引言     1.探索人脸关于姿势.年龄.遮挡.光照.表情的不变性,通过特征工程人工构造feature,结合PCA.LDA.支持向量机等机器学习算法.     2.流程 人脸检测,返回人脸的bounding box 人脸对齐,用2d或3d的参考点,去对标人脸 人脸表达,embed 人脸匹配,匹配分数 二.人脸识…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954更多 分类专栏: 深度学习 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u011239443/article/details/80076720 https://blog.csdn.…
论文阅读:Adaptive NMS: Refining Pedestrian Detection in a Crowd 2019年04月11日 23:08:02 Kivee123 阅读数 836   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_37014750/article/details/89222334 Adaptive-NMS(CVPR 2019) 文章  又是一篇在NM…