收入囊中 lookup table 对照度拉伸 直方图均衡化 葵花宝典 lookup table是什么东西呢? 举个样例,假设你想把图像颠倒一下,f[i] = 255-f[i],你会怎么做? for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ) I.at<uchar>(i,j) = 255 - I.at<uchar>(i,j); 大部分人应该都会这么做.或者: for( i = 0; i &…
收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检測(Sobel,prewitt,roberts)  我们已经认识了3个一阶差分算子 拉普拉斯算子是二阶差分算子.为什么要增加二阶的算子呢?试想一下,假设图像中有噪声,噪声在一阶导数处也会取得极大值从而被当作边缘.然而求解这个极大值也不方便.採用二阶导数后,极大值点就为0了.因此值为0的地方就是边界.…
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 分享Java的实现 葵花宝典 在此之前,我们先阐述一下canny检測的算法.总共分为4部分. (1)处理噪声 一般用高斯滤波.OpenCV使用例如以下核 (2)计算梯度幅值 先用例如以下Sobel算子计算出水平和竖直梯度 我在OpenCV2马拉松第14圈--边缘检測(Sobel,prewitt,ro…
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 仿射变换 坐标映射 利用坐标映射做一些效果,例如以下 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" hei…
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27220445 收入囊中 Hough变换 概率Hough变换 自己实现Hough变换直线检測 葵花宝典 先看一下我实现的效果图 以下,我们进入Hough变换的原理解说. 看上图,我们知道,经过一点(x0,y0)的直线能够表示成y0 = mox + b0 反过来看方程,b = –x0m + y0 ,于是我们从原来的坐标系转移到了Hough空间,m是横…
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的图片 作为人,我们能够非常easy发现图中红圈有边界,边界处肯定是非常明显,变化陡峭的,在数学中,什么能够表示变化的快慢,自然就是导数,微分了. 想像有例如以下的一维图片. 红圈处变化最陡峭,再看导数图 红圈在最高值,也就是导数能够非常好表示边缘,由于变化非常剧烈 图像中的Sobel算子 是离散差分…
收入囊中 用imread读取图片 用nameWindow和imshow展示图片 cvtColor彩色图像灰度化 imwrite写图像 Luv色彩空间转换 初识API 图像读取接口 image = imread(argv[1], CV_LOAD_IMAGE_COLOR); CV_LOAD_IMAGE_UNCHANGED (<0) 图片怎么样就怎么读取(包含透明度这个通道) CV_LOAD_IMAGE_GRAYSCALE ( 0)  CV_LOAD_IMAGE_COLOR (>0) RGB读取 建…
收入囊中 灰度图像的反向投影 彩色图像的反向投影 利用反向投影做object detect 葵花宝典 什么是反向投影?事实上没有那么高大上! 在上一篇博文学到,图像能够获得自己的灰度直方图. 反向投影差点儿相同是逆过程,由直方图得到我们的投影图. 步骤例如以下: 依据模版图像,得到模版图像的灰度直方图. 对灰度直方图对归一化,归一化后是个概率分布,直方图的积分是1 依据概率分布的直方图,求输入图像的投影图,也就是对每个像素点,我们依据灰度值,能够得到其概率 得到的投影图是介于[0,1]之间的,为…
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的connerHarris实现角点检測 自己实现Harris算法 以下是自己实现的一个效果图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/…
收入囊中 这里的非常多内容事实上在我的Computer Vision: Algorithms and ApplicationsのImage processing中都有讲过 相关和卷积工作原理 边界处理 滤波器的工作原理 会使用均值滤波,高斯滤波 使用自己创造的核函数进行双线性滤波 可分离的滤波(加速) 葵花宝典 相关: g=f⊗h 卷积: g=f∗h  临时不考虑边缘.所以8*8的图形进行相关或卷积操作后就得到6*6的图形 由于我们的h(有时叫做核函数)是中心对称的,所以相关和卷积得到的结果是一…