CRS 表示:Compressed Row Storage CCS 表示:Compressed Column Storage CRS的表示参考: https://blog.csdn.net/buptfanrq/article/details/72518120 CCS的表示参考: http://www.importnew.com/22977.html 其实我理解上面两个是一样的,区别就是行和列.…
在使用 import org.apache.spark.ml.feature.VectorAssembler 转换特征后,想要放入 import org.apache.spark.mllib.classification.SVMWithSGD 去训练的时候出现错误: Caused by: java.lang.ClassCastException: org.apache.spark.ml.linalg.DenseVector cannot be cast to org.apache.spark.m…
import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.linalg.Vectors import org.apache.spark.sql.SparkSession /** * 逻辑回归 * Created by zhen on 2018/11/20. */ object LogisticRegr…
规范化,有关之前都是用 python写的,  偶然要用scala 进行写, 看到这位大神写的, 那个网页也不错,那个连接图做的还蛮不错的,那天也将自己的博客弄一下那个插件. 本文来源 原文地址:http://www.neilron.xyz/spark-ml-feature-scaler/ 下面是大神写的: org.apache.spark.ml.feature包中包含了4种不同的归一化方法: Normalizer StandardScaler MinMaxScaler MaxAbsScaler…
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就是这种关系的陈述.其中,L(A|B)表示在B发生的前提下,A发生的概率.L表示要取对数的意思. 关键词解释: 1.p(A),p(B)表示A,B发生的概率,也称先验概率或边缘概率. 2.p(B|A)表示在A发生的前提下,B发生的概率,也称后验概率. 基本公式:p(A|B) = p(AB)/p(B) 图…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html   Spark PipeLine 是基于DataFrames的高层的API,可以方便用户构建和调试机器学习流水线 可以使得多个机器学习算法顺序执行,达到高效的数据处理的目的   DataFrame是来自Spark SQL的ML DataSet 可以存储一系列的数据类型,text,特征向量,Label和预测结果   Transformer:将DataFrame转化为另外一个DataFra…
本博客为作者原创,如需转载请注明参考           在深入理解Spark ML中的各类算法之前,先理一下整个库的设计框架,是非常有必要的,优秀的框架是对复杂问题的抽象和解剖,对这种抽象的学习本身,就是加深框架所面对的问题的理解的一种有效途径.纷繁复杂的机器学习问题,经过优秀框架的解析,变得简单清晰起来.         基于面向对象语言的程序设计,本质上类似于搭积木,从一个最抽象.最简单的内容开始,一点一点的往上堆叠,形成一个对象的框架.比如Java中的Object,Python中的PyO…
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习…
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. 相对于RDD, DataFrame拥有更丰富的操作API, 可以进行更灵活的操作. 目前, spark.mllib已经进入维护状态, 不再添加新特性. 本文将重点介绍pyspark.ml, 测试环境为Spark 2.1, Python API. 首先介绍pyspark.ml中的几个基类: ML Da…
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习…
一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习问…
Machine and statistical learning wizards are becoming more eager to perform analysis with Spark MLlibrary if this is only possible. It’s trendy, posh, spicy and gives the feeling of doing state of the art machine learning and being up to date with th…
        前一节从宏观角度给大家介绍了Spark ML的设计框架(链接:http://www.cnblogs.com/jicanghai/p/8570805.html),本节我们将介绍,Spark ML中,机器学习问题从单机到分布式转换的核心方法.         单机时代,如果我们想解决一个机器学习的优化问题,最重要的就是根据训练数据,计算损失函数和梯度.由于是单机环境,什么都好说,只要公式推导没错,浮点数计算溢出问题解决好,就好了.但是,当我们的训练数据量足够大,大到单机根本存储不下的…
        之前我们讲过,在Spark ML中所有的机器学习模型都是以参数作为划分的,树相关的参数定义在treeParams.scala这个文件中,这里构建一个关于树的体系结构.首先,以DecisionTreeParams作为起始,这里存储了跟树相关的最基础的参数,注意它扩展自PredictorParams.接下来为了区分分类器和回归器,提出了TreeClassifierParams和TreeRegressorParams,两者都直接扩展自Params,分别定义了树相关的分类器和回归器所需要…
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在代码实现的级别管理好每一个处理步骤之间的先后运行关系,极大地简化了开发机器学习应用的难度.        Spark ML Pipeline使用DataFrame作为机器学习输入输出数据集的抽象.DataFrame来自Spark SQL,表示对数据集的一种特殊抽象,它也是Dataset(它是Spar…
C++实现矩阵压缩 转置运算时一种最简单的矩阵运算.对于一个m*n的矩阵M,他的转置矩阵T是一个n*m的矩阵,且T(i,j) = M(j,i). 一个稀疏矩阵的转置矩阵仍然是稀疏矩阵. 矩阵转置 方案一: 1将矩阵的行列值相互交换 2将每个原则中的i j 相互交换 3重新排列三元组之间的次序 这种方法实现比较简单,一次迭代交换i j 值. 然后就是两层循环进行排序操作了. 方案二 具体实心步骤: 1 迭代遍历,统计列中元素个数 2 由1的结果迭代计算每一列中元素起始位置 3 依据2中得到数据进行…
下面代码按照之前参加Kaggle的python代码改写,只完成了模型的训练过程,还需要对test集的数据进行转换和对test集进行预测. scala 2.11.12 spark 2.2.2 package ML.Titanic import org.apache.spark.SparkContext import org.apache.spark.sql._ import org.apache.spark.sql.functions._ import org.apache.spark.ml.fe…
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估…
        前面跟大家扯了这么多废话,终于到具体的机器学习模型了.大部分机器学习的教程,总要从监督学习开始讲起,而监督学习的众多算法当中,又以分类算法最为基础,原因在于分类问题非常的单纯直接,几乎不需要引入一些其它概念,因此我们就先从分类器开始讲起.         还记得第一节介绍的Spark ML架构吗?从Param起始,Spark ML通过PipelineStage引入了三个基本概念,Transformer,Estimator,Model,其中T和E本质上都是PipelineState…
今天去逛论坛 时发现了一个很有趣的问题: 谁能给我我解释一下这段程序的结果为什么是:2.而不是:3 代码如下: class Test { public int aaa() { int x = 1; try { return ++x; } catch (Exception e) { } finally { ++x; } return x; } public static void main(String[] args) { Test t = new Test(); int y = t.aaa();…
web前端工程师在移动互联网时代里的地位问题 支付宝十周年推出了一个新产品:支付宝的十年账单,我也赶个时髦查看了一下我的支付宝十年账单,哎,感慨自己真是太屌丝了,不过这只是说明我使用淘宝少了,当我大规模网上购物时候,我很讨厌慢速的快递,所以我大部分消费都贡献给了像京东这样具有火箭般快递速度的电子商城了.不过在支付宝十年账单里,有个统计数据引起了我的危机意识,在中国一些偏远或者是经济欠发达的省份,电子购物在居民的全部消费里的占比比发达地区高多了,而这个的助推剂居然是移动互联网在中国的普及,在中国使…
问题:一个K×M的矩阵,第一列是1,其它都是0,从最后一行开始,每循环一次,最后一行的1往右边移一位,移动到末尾后溢出,重新回到最左边,同时上一行的1往右边移一位.上一行溢出时,上上一行的1移动一位,以此类推,,直到第一列的1全部移动到最后一列停止. 编写工具:MATLAB R2015b 32位 代码: function CyclicShift(input) [lineNum,rowNum]=size(input); counters=zeros(1,lineNum); while(size(f…
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤. 在介绍工作流之前,我们先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型. 较之 RDD,包含了 schema 信息,更类似传统数据库中的二维表格.它被 ML Pipeline 用来存储源数据.例如…
支持连续变量和类别变量,类别变量就是某个属性有三个值,a,b,c,需要用Feature Transformers中的vectorindexer处理 上来是一堆参数 setMaxDepth:最大树深度 setMaxBins:最大装箱数,为了近似统计变量,比如变量有100个值,我只分成10段去做统计 setMinInstancesPerNode:每个节点最少实例 setMinInfoGain:最小信息增益 setMaxMemoryInMB:最大内存MB单位,这个值越大,一次处理的节点划分就越多 se…
一.简介 协同过滤算法[Collaborative Filtering Recommendation]算法是最经典.最常用的推荐算法.该算法通过分析用户兴趣,在用户群中找到指定用户的相似用户,综合这些相似用户对某一信息的评价,形成系统关于该指定用户对此信息的喜好程度预测. 二.步骤 1.收集用户偏好. 2.找到相似的用户或物品. 3.计算推荐. 三.用户评分 从用户的行为和偏好中发现规律,并基于此进行推荐,所以收集用户的偏好信息成为系统推荐效果最基础的决定因素. 数据预处理: 1.减噪 因为用户…
IP,直接在case class里用string, 可以考虑先用其它程序生成相关的mapping,然后再去用spark填充数据…
题目链接:http://acm.swust.edu.cn/problem/589/ Time limit(ms): 2000 Memory limit(kb): 65535   Description 告诉你们一个好消息,Wraith前几天天得到一块西瓜,但是是长方体形的.... Wraith发现这块西瓜长m厘米,宽n厘米,高h厘米.他发现如果把这块西瓜平均地分成m*n*h块1立方厘米的小正方体,那么每一小块都会有一个营养值(可能为负,因为西瓜是有可能坏掉的,但是绝对值不超过200). 现在Wr…
Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18928   Accepted: 4074 Description You are given three n × n matrices A, B and C. Does the equation A × B = C hold true? Input The first line of input contains a posit…
Surf算法是一把牛刀,我们可以很轻易的从网上或各种Opencv教程里找到Surf的用例,把例程中的代码或贴或敲过来,满心期待的按下F5,当屏幕终于被满屏花花绿绿的小圆点或者N多道连接线条霸占时,内心的民族自豪感油然而生,仿佛屠龙宝刀在手,屁颠屁颠的很开心. 如果对Surf的探究或者使用到此为止,我觉得只是用Surf这把牛刀吓唬了一个小鸡仔,万里长征才刚刚开始第一步,最少有三个问题需要得到解答: 1. 保存特征点信息的keyPoints向量内每个元素包含有哪些内容? 2. 通过comput方法生…